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Derivation of phenomenological equations of hydromechanics  
of multi-phase flows
Wyprowadzenie fenomenologicznych równań hydromechaniki  
przepływów wielofazowych

Gasim A. Mamedov, Rauf Kh. Malikov, Natiq M. Abbasov, Mahluga S. Rahimova

Azerbaijan State Oil and Industry University

ABSTRACT: In the article, a multi-phase (non-homogeneous, heterogeneous) medium is considered as a macrosystem (continuum) 
composed of several (at least two) phases, such as a carrier phase (liquid, vapor or gas) and a carried phase (solid particles, bubbles or 
drops).The masses and mixtures of these phases undergo continuous changes over time due to the addition or separation of new masses 
to or from both phases. The model takes into account interphase transitions, discontinuities inside the mixture, and the possibility of 
phases being either continuous or discrete, depending on their location. A method for preliminary smoothing of discontinuities has been 
developed, leveraging the fact that the location in space, as well as the shape and size of the discrete phase are random. A function, 
denoted as φi (x, y, z, t), has been introduced, which indicates the probability of the presence of the i-th phase in the vicinity of a given 
point in space at time t, or that the given point of space x, y, z at time t belongs to the set of points of the i-th phase. On the other hand, 
this probability can be interpreted as the volumetric concentration of the i-th phase at a given point in space (i.e., the ratio of the measure 
of the set of points belonging to the i-th phase in the vicinity of the point under consideration at time t to the measure of the entire set 
of points in the surrounding area). This hypothetical medium, being equivalent to the original one, serves as a model for a multi-phase 
(inhomogeneous, heterogeneous, two-phase) medium. The uniqueness of the model arises from its construction. In addition, this pa-
per considers several main areas of theoretical and experimental research concerning the hydrodynamics of a multi-phase (two-phase 
suspension-carrying) flow of a continuous medium. It also discusses the most important results achieved in existing works. A critical 
analysis of known theories for mathematically describing the motion of multi-phase (two-phase) systems and methods for averaging 
the hydrodynamic characteristics of a turbulent flow are given. The procedure for closing the equations systems of hydromechanics of 
multi-phase flows proposed in existing works is carried out within the framework of semi-empirical theories of turbulence. In nature, 
the vast majority of multi-phase (two-phase, inhomogeneous) mixtures exhibit turbulent behavior, making its study a crucial practical 
task. The mathematical description of the motion of a turbulent multi-phase flow relies on stylized laws of mechanics. The methods 
of operational analysis proposed at various times by different researchers for the mathematical description of the motion of a multi-
phase (two-phase) flow have varying degrees of approximation and certain limited areas of application. One of the main challenges 
in formulating differential equations for the motion of a turbulent multi-phase (two-phase, suspension-carrying) flow is the fact that 
in a turbulent flow of a mixture, where the characteristics of the flow change chaotically and randomly over time and at each point in 
space, both in magnitude and in direction, there are surfaces with weak and strong discontinuities. Consequently, the actual values of 
velocity and pressure of a multi-phase flow, strictly speaking, cannot be considered continuous functions of the coordinates of space 
and time throughout the entire region occupied by the mixture.

Key words: hydromechanics of multi-phase flows; mass transfer equations; momentum equations; kinetic energy equations; total energy 
equations and multi-phase medium.

STRESZCZENIE: Niniejszy artykuł omawia medium wielofazowe (niejednorodne, heterogeniczne), jako makrosystem (kontinuum) 
składający się z kilku (co najmniej dwóch) faz, takich jak faza nośna (ciecz, para lub gaz) i faza niesiona (cząstki stałe, pęcherzyki 
lub krople). Masy i mieszaniny tych faz ulegają ciągłym zmianom w czasie z powodu dodawania lub oddzielania nowych mas do lub 
z obu faz. Model uwzględnia przejścia międzyfazowe, nieciągłości wewnątrz mieszaniny oraz możliwość występowania faz ciągłych 
lub rozproszonych, w zależności od ich położenia. Opracowano metodę wstępnego wygładzania nieciągłości, wykorzystując fakt, że 
lokalizacja w przestrzeni, a także kształt i rozmiar fazy rozproszonej są losowe. W modelu tym wprowadzono funkcję wyrażającą 
prawdopodobieństwo obecności i-tej fazy w pobliżu danego punktu przestrzeni w czasie t lub tego, że dany punkt przestrzeni w czasie t 
należy do zbioru punktów i-tej fazy. Z drugiej strony, prawdopodobieństwo to można interpretować jako stężenie objętościowe i-tej 
fazy w danym punkcie przestrzeni (tj. stosunek miary zbioru punktów należących do i-tej fazy w sąsiedztwie rozpatrywanego punktu 
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w chwili t do miary całego zbioru punktów w otoczeniu). Ten hipotetyczny ośrodek, będąc równoważnym oryginalnemu, służy jako 
model ośrodka wielofazowego (niejednorodnego, heterogenicznego, dwufazowego). Wyjątkowość modelu wynika z jego konstrukcji. 
Ponadto, w artykule omówiono kilka głównych obszarów badań teoretycznych i eksperymentalnych dotyczących hydrodynamiki wielo-
fazowego (dwufazowego) przepływu zawiesiny w medium ciągłym. Omówiono również najważniejsze wyniki uzyskane w istniejących 
pracach. Dokonano krytycznej analizy znanych teorii matematycznego opisu ruchu układów wielofazowych (dwufazowych) oraz metod 
uśredniania charakterystyk hydrodynamicznych przepływu turbulentnego. Zaproponowana w istniejących pracach procedura rozwią-
zywania układów równań hydromechaniki przepływów wielofazowych jest realizowana w ramach półempirycznych teorii turbulencji. 
W naturze zdecydowana większość mieszanin wielofazowych (dwufazowych, niejednorodnych) wykazuje zachowanie turbulentne, 
co czyni ich badanie kluczowym zadaniem praktycznym. Matematyczny opis ruchu turbulentnego przepływu wielofazowego opiera 
się na uproszczonych prawach mechaniki. Metody analizy operacyjnej zaproponowane w różnym czasie przez różnych badaczy do 
matematycznego opisu ruchu przepływu wielofazowego (dwufazowego) charakteryzują się różnym stopniem przybliżenia i pewnymi 
ograniczonymi obszarami zastosowań. Jednym z głównych wyzwań w formułowaniu równań różniczkowych dla ruchu turbulentnego 
przepływu wielofazowego (dwufazowego, przenoszącego zawiesinę) jest fakt, że w turbulentnym przepływie mieszaniny, gdzie charak-
terystyka przepływu zmienia się chaotycznie i losowo w czasie oraz w każdym punkcie przestrzeni, zarówno pod względem wielkości, 
jak i kierunku, występują powierzchnie o słabych i silnych nieciągłościach. W związku z tym rzeczywiste wartości prędkości i ciśnienia 
przepływu wielofazowego, ściśle rzecz biorąc, nie mogą być uważane za ciągłe funkcje współrzędnych przestrzeni i czasu w całym 
obszarze zajmowanym przez mieszaninę.

Słowa kluczowe: hydromechanika przepływów wielofazowych; równania przepływu masy; równania pędu; równania energii kinetycz-
nej; równania energii całkowitej i medium wielofazowego.

Task setting

It is assumed that there are interphase transitions, disconti-
nuities within the mixture, and that the phases, depending on 
their location, can be either continuous or discrete. A method for 
preliminary smoothing of discontinuities has been developed, 
leveraging the fact that the location in space, as well as the 
shape and size of the discrete phase are random. A function, 
denoted as φi (x, y, z, t) has been introduced, which indicates 
the probability of the presence of the  i-th phase in the vicinity 
of a given point of space x, y, z at time t, or that a given point 
of space x, y, z at that moment of time belongs to the set of 
points of the i-th phase.

Goal of the work

The goal of this study is to derive the general equations 
of hydromechanics for multi-phase flows, consisting of the 
equations of mass transfer, momentum, angular momentum, 
kinetic and total energy.

Introduction

The range of problems related to the hydromechanics of 
multi-phase (two-phase suspended, heterogeneous, inhomo-
geneous) media is remarkably extensive and has experienced 
significant development in recent years. This growth is driven 
by its critical practical applications in areas such as: oil and 
gas wells drilling; hydro-, thermal and nuclear power engineer-
ing; aviation and rocket technology; stratification and ecol-

ogy; hydraulic engineering and water management; pipeline 
transport of oil, gas, water and other liquids; petrochemistry; 
chemical technology and many others. A characteristic feature 
of multi-phase media is the coexistence of carrier (liquid) and 
carried (suspended) phases (gas-solid particles, gas-liquid 
drops, liquid-gas bubbles, liquid-solid particles, vapor-liquid 
drops, etc.). In such flows, there is a constant exchange of 
mass, momentum and energy (kinetic and thermal) between 
these phases. In addition, a specific feature of the system under 
consideration is also the fact that, when both phases can be 
regarded as incompressible, the multi-phase medium exhibits 
behavior akin to that of a compressible fluid.

Experimental part

To derive the relevant equations of hydromechanics, an 
arbitrary volume of a multicomponent medium limited by the 
surface is singled out. For the sake of generality, it is assumed 
that the total mass of the mixture undergoes continuous changes 
over time due to the addition to it (or separation from it) of the 
elementary mass (Figure 1).

To mathematically describe the motion of a multicomponent 
flow, specific characteristics are employed. Let an elementary 
volume τ with mass m contain i phases with volumes τ1, τ2, τ3, ..., τi  
and masses m1, m2, m3, ..., mi.

Then:

 φ
τ
τi

i=  (1)

• volume concentration (share) of the i-th phase

 ρ
τi
i

i

m
=  (2)
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•	 i-th phase density

 ρ
τ

=
m

 (3)

• medium density

 x m
mi
i i i= =

φ ρ
ρ

 (4)

mass concentration of i-th phase.

this purpose. The first method involves forming conservation 
laws (for mass, momentum and energy) for each component of 
the mixture (Zvonarev, 2019). The second approach involves 
considering that the phases are distributed within one another. 
In this case, either one of the phases or both phases are treated 
as continuous throughout the entire considered volume of the 
mixture, and the equations characterizing the course of the 
process in them are written for the mixture as a whole. This 
approach is typically used to describe so-called homogeneous 
mixtures (media) consisting of well-dispersed components 
within a medium (liquid or gaseous), as well as solutions, i.e., 
in cases where the interaction between the components of the 
mixture actually occurs at the molecular level.

Here, in a general form (in a three-dimensional form), the 
construction of systems of equations of hydromechanics that 
describe the motion of each phase separately and the medium 
as a whole is considered (Alder, 2001). To establish these 
equations, an arbitrary volume of a multi-phase medium τ (t ) 
limited by the surface σ (t ) is selected, and it is assumed that the 
total mass of the mixture changes continuously (Shen, 2012).

As it is well-known, the mass transfer equation serves 
a mathematical formulation of the law of mass conservation. In 
the presence of sources of mass flow, we formulate this law as 
follows: the time derivative of the mass of the mixture (phase, 
class) within an arbitrary volume τ (t ) is equal to its change 
resulting from the attachment to it (or separation from it) of 
the elementary mass and phase transformations.

1.  Let us consider an arbitrary volume τ (t ) bounded by surface 
σ (t ) and the presence of s carrier (continuous) phase within it 
at time t. Let the elementary volume dτ, contain the mass of 
this phase ρf  φf  dτ where ρf  φf  represent the density and volu-
metric concentration (share or content) of the carrier phase,  
respectively. Consequently, the total mass of the consid-
ered phase within the volume τ (t ) will be expressed by the 
volume (triple) integral (Mathematical modeling, 2014):

 m df f f
t

= ∫ ρ φ τ
τ ( )

 (9)
where:
mf – is the mass of the carrier phase.

The change in the mass of the carrier phase (the derivative 
of the mass, mf , with respect to time, t ) within the allocated 
volume per unit time, is expressed as:

 
dm
dt

d
dt

df
f

t
f= ∫ ρ φ τ

τ ( )

 (10)

This mass change occurs due to the process of attachment to it  
(or separation from it) of the elementary mass of the carrier 
phase and phase transformations (for example, the transition 
of the carrier phase to the carried phase), per unit of time:

Figure 1. Flow diagram with mass attachment or separation
Rysunek 1. Schemat przepływu z przyłączeniem masy lub jej 
oddzieleniem

It is evident that:

 τ τ ρ ρ φ φ= = = = =∑ ∑ ∑ ∑ ∑ii ii ii i ii ii
m m x, , , ,1 1  (5)

Therefore, the geometric characteristic of the volume τ 
at each point in the space is φi . In this case, it is possible to 
determine the parameters characterizing the environment as 
a whole, namely:
•  mixture velocity vector

 C C x C
i i i i i= =∑ ∑1

1 1ρ
ρ φ  (6)

•  mixture mass force vector

 F F
i i i= ∑1

1ρ
ρ φ  (7)

•  mixture surface force tensor 

 Π Π=∑φi i  (8)

and so on. Here Fi , Πi are external mass and surface stresses 
acting on the i-th phase of the mixture.

The derivation of the general equations of mass transfer, 
momentum, angular momentum, kinetic and total energy in 
two-phase media with a change in mass flow is described 
below. Two different construction methods are employed for 
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m q df f

t

= −∫ ( )
( )

χ τ
τ  

(11)

where: qf –the specific attached (or detached, then qf < 0) 
mass of the carrier phase (i.e. per unit volume, the 
second mass attached to or detached from the carrier 
phase through the surface limiting the selected volu-
me); χ – the specific mass of the phase transition of 
the carrier phase into the carried phase (i.e., per unit 
volume, the second mass of the phase transition at the 
interface) (Kuznetsov, 2017).

Then, in accordance with the law of conservation of mass:

 
d
dt

d q df f
t

f
t

ρ φ τ χ τ
τ τ( ) ( )

( )∫ ∫= −  (12)

Let us note that in the region of continuous motions, the 
integral equation of the law of conservation of mass for the 
carrier phase (12) will be satisfied for any moving volume τ (t )
with a smooth boundary σ (t ) and is equivalent to the differential 
equation, to the derivation of which we proceed (Umnov, 2012).

The formula for differentiation with respect to time from the 
integral taken over the moving volume can be used to transform 
the left side of (12). Let a continuous differentiable function 
be defined at each point of the moving mixture (phase, class), 
depending on the coordinates of points in space and time (it 
can be a scalar, vector or tensor), i.e. a (x, y, z, t). And let J(t )
be the function defined by the integral:

 j t a x y z t d
t

( ) ( , , , )
( )

= ∫
τ

τ  (13)

taken over the moving volume τ (t ). The total time derivative 
of J(t ) has the form:

 
d
dt

ad a
t
d aC d

t t
n

t

τ τ σ
τ τ σ( ) ( ) ( )
∫ ∫ ∫=

∂
∂

+  (14)

Equation (14) is a formula for differentiating with respect 
to time from an integral taken over a moving volume τ (t ) with 
a smooth boundary (it is also called the transfer theorem). 
It states that the rate of change of some extensive physical quan-
tity a (x, y, z, t) (the value is considered extensive if it depends 
on the volume of the physical system under consideration) 
in the part of the medium that currently occupies the volume 
τ (t ) is equal to the sum of changes in this quantity at all points 
inside the volume τ (t ), plus the flow of the quantity a (x, y, z, t)  
through the surface σ (t ) bounding the volume τ (t ).

Now, in expression (14), by setting a = ρf  φf, equation (12) 
can be represented as:

 ∂
∂

− −





+ =∫ ∫t
q d C df f f

t
f f

t
fn( ) ( )

( ) ( )

ρ φ φ τ ρ φ σ
τ σ

0  (15)

where Cfn = Cf · n; Cf  carrier phase velocity vector,
n – the outer normal to the surface.

In the last equation (15):

ρ φ σ χ τ
σ τ

f f
t

fn f
t

C d q d
( ) ( )

( )∫ ∫− − represents the change in the  
   mass of the carrier phase, contained 
within an arbitrarily allocated volume, per unit of time;
∂
∂∫ t

df f
t

( )
( )

ρ φ τ
τ

represents the rate of change in the mass of  
              the carrier phase contained in the volume τ (t ).
Equation (15) represents the mass transfer equation for 

the carrier phase of a multi-phase medium in integral form.
From the integral form of the mass flow transfer equation 

(15) for the volume, one can go over to the transfer equation 
at each point in space. To do this, we need to transform the 
surface integral (last term) in equation (15) to a volume integral. 
Let us express Cfn in terms of velocity projections (uf , vf , wf ) 
on the coordinate axes:
 C C n u n x v n y w n zfn f f f f= ⋅ = + +cos( , ) cos( , ) ( , )  (16)
and proceed according to the Gauss-Ostrogradsky formula 
(which states that the volume integral of the divergence of 
a vector over an arbitrarily chosen area is equal to the vector 
flow through the boundary of this area, oriented in the direction 
of its outer normal) to the volume integral:

 

ρ φ σ

ρ φ ρ φ ρ φ

σ
f

t
f fn

f f f f f f f f f

C d

x
u

y
v

z
w d

( )

( ) ( ) ( )

∫ =

=
∂
∂

+
∂
∂

+
∂
∂









 ττ

τ ( )t
∫

 (17)

or 
 ρ φ σ ρ φ τ

σ τ
f

t
f fn f f f

t

C d div C d
( ) ( )

( )∫ ∫=  (18)

Substituting (18) into (15), we get:

  ∂
∂

+ − −





=∫ x
div C q df f f f f f

t

( ) ( ) ( )
( )

ρ φ ρ φ χ τ
τ

0  (19)

Equation (19) holds for any volume. This is possible when 
the integrand equals zero. Hence:

 ∂
∂

+ = −
x

div C qf f f f f f( ) ( )ρ φ ρ φ χ  (20)

which we will call the differential mass flow transfer equation 
for the carrier phase. In the absence of attached (or separated) 
mass of the carrier phase (i.e., at qf = 0), this equation, as a 
special case, coincides with a similar equation for the carrier 
phase, derived in the works:

 
∂
∂

+ = −
t

div Cf f f f f( ) ( )ρ φ ρ φ χ  (21)

2.  Let us turn to the carried (discrete) phase. In the general 
case, the carried (discrete) phase consists of a set of particles 
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of varying sizes, divided into classes. First, we derive the 
mass flow transfer equation for a specific class of this phase. 
Let us consider the i-th class of the carried dispersed phase 
within the volume τ (t ). The mass of this class in the volume 
τ (t ) will be given by:

  m dsi si
t

i= ∫ ρ ψ τ
τ ( )

 (22)

where: msi , ρsi mass and density of the i-th class of the car-
ried phase,

ψi – distribution density of particles based on their characte-
ristics:

  ψ φi s if=  (23)
φs volumetric concentration (share or content) of the carried 
phase,
fs distribution density of particles by classes.

Let us take into account that the mass of the i-th class of the 
carrier phase, as well as the carrier phase, continuously changes 
with time. Then, by analogy with (12), the mass conservation 
law in the integral form for the i-th class will be written as 
(Zaliznyak and Zolotov, 2023):

 
d
dt

d q dsi i si i si
t

ρ ψ τ χ χ τ
τ

∫ ∫= + +( )
( )

 (24)

where: χsi = Σj χsji specific attached (or separated, then qsi < 0)  
mass of the i-th class of the carried phase; χsi , χi –  the 
specific masses of the phase transition of the carrier 
phase and the j-th class of the carried phase to the i-th 
class, respectively (Abbasov et al., 2006).

Using (14) and the Gauss-Ostrogradsky formulas on the left 
side of (24), we can obtain the following differential mass flow 
transfer equation for the i-th class (Allaire and Craig, 2007):

 
∂
∂

+ = + +
t

div C qsi i si i si si i si( ) ( )ρ ψ ρ ψ χ χ  (25)

where: Csi is the velocity vector of the i-th class of the car-
ried phase. From (25) with qsi = 0 and χsi = 0, we get:

 
∂
∂

+ =
t

div Csi i si i si i( ) ( )ρ ψ ρ ψ χ  (26)

Summing (25) over all classes i and taking into account 
(23), we obtain a differential mass transfer equation for the 
carried phase as a whole:

 
∂
∂

+ = +
t

div C qs s s s s s( ) ( )ρ ψ ρ ψ χ  (27)

where: ρs, qs, Cs are density, specific attached (or separated) 
mass and velocity vector of the carried phase:

 ρ ρs si ii
f=∑  (28)

 C f Cs
s

sii i si= ∑1
ρ

ρ  (29)

 q qs sii
=∑  (30)

and
 χ χsii sjii j∑ ∑= =

,
0  (31)

according to the law of physical and chemical transformations.
From (27) with qs = 0, as a special case, we obtain:

 ∂
∂

+ =
t

div Cs s s s s( ) ( )ρ φ ρ φ χ  (32)

3.  Let us determine the mass transfer equation for the multi-
phase mixture as a whole. It can be obtained by summing 
either the integral phase equations or their differential forms. 
By adding (20) and (27), and also taking into account the 
expression for the velocity vector of a multi-phase (two-
phase) medium (Aslanov et al., 2022):

 C
C Cs s s f f f

s s f f

=
+
+

ρ φ ρ φ
ρ φ ρ φ

 (33)

we can write:

 ∂
∂

+ =
ρ ρ
t
div C q( )  (34)

where: ρ, q are the density and specific attached (or separat-
ed, then q < 0) mass of a two-phase (inhomogeneous) 
medium:

 ρ ρ φ ρ φ= +f f s s  (35)
 q q qf s= +  (36)

Considering the mass concentration of the carrier χf and 
carried χs phases:

 χ
ρ φ
ρ

χ
ρ φ
ρf

f f
s

s s= =
( )

, ( )
 (37)

expression (33) can be represented as:

 C C Cf f s s= +χ χ  (38)

Equation (38) will be referred to as the differential equation 
of mass transfer of a multicomponent medium. In the absence 
of an attached (or separated) mass of the mixture, equation 
(34) coincides with (Gusev et al., 2023):

  ∂
∂

+ =
ρ ρ
t
div C( ) 0  (39)

Let us write the mass transfer (continuity) equations for the 
phases and the multi-phase medium as a whole in the Cartesian 
coordinate system

 

∂
∂

+
∂
∂

+

+
∂
∂

+
∂
∂

= +

t x
u

y
v

z
w q

f f f f f

f f f f f f f

( ) ( )

( ) ( )

ρ φ ρ φ

ρ φ ρ φ χ
 (40)

 
∂
∂

+
∂
∂

+

+
∂
∂

+
∂
∂

= +

t x
u

y
v

z
w q

s s s s s

s s s s s s s

( ) ( )

( ) ( )

ρ φ ρ φ

ρ φ ρ φ χ

 (41)

 ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=
ρ ρ ρ ρ
t x

u
y

v
z

w q( ) ( ) ( )  (42)
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Using the numerical numbering of coordinates (x = x1, y = x2, 
z = x3) and speed (u = C1, v = C2, w = C3), equations (40)–(42) 
can be represented in a more compact form. For example, equa-
tion (42) will have the following form (Habibov et al., 2022):

 ∂
∂

+
∂
∂

=
=
∑ρ ρ

t x
C q

kk
k

1

3

( )  (43)

Conclusions

Based on the results of scientific research, the authors rec-
ommend using the improved approach for deriving phenom-
enological equations proposed in this work when calculating 
the hydromechanics of multi-phase flows consisting of mass 
transfer equations.
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