Nafta-Gaz 2022, nr 4, s. 299-311, DOI: 10.18668/NG.2022.04.06

Analiza możliwości wykorzystania aparatu PetroOxy do oznaczania stabilności termooksydacyjnej smarów plastycznych metodą RSSOT (*Rapid Small-Scale Oxidation Test*)

Assessment of the possibility of using the PetroOxy instrument to determine the thermo-oxidative stability of plastic greases using the RSSOT (Rapid Small-Scale Oxidation Test) method

Dariusz Sacha, Agnieszka Skibińska, Wojciech Krasodomski

Instytut Nafty i Gazu – Państwowy Instytut Badawczy

STRESZCZENIE: W warunkach eksploatacji smar podlega działaniu szeregu czynników, które powodują jego destrukcję. Smar spełniający swoje podstawowe funkcje w układzie smarowania narażony jest przede wszystkim na działanie wysokiej temperatury, a dominującym procesem starzenia, bezpośrednio wpływającym na okres użytkowania smaru, jest utlenianie. Stabilność termooksydacyjna ma decydujący wpływ na jakość i długość czasu pracy smarów w węzłach tarcia i układach smarowania. W 2018 r. ukazała się nowa procedura badawcza określająca stabilność oksydacyjną smarów plastycznych według normy ASTM D8206 (*Standardowa metoda badania stabilności oksydacyjnej smarów – szybki test utleniania w małej skali RSSOT*). Metoda badania polega na umieszczeniu badanej próbki smaru plastycznego w ilości 4,00 g (±0,01 g) w szklanym naczynku. Powierzchnia smaru znajdującego się w naczyniu reakcyjnym musi być dobrze wyrównana. Proces ten należy przeprowadzić w temperaturze otoczenia. Szklane naczynie ze smarem plastycznym wkłada się do komory reakcyjnej aparatu badawczego i napełnia komorę tlenem do ciśnienia 700 kPa (±5 kPa). Komora reakcyjna jest ogrzewana do zadanej temperatury (140°C lub 160°C). Ciśnienie w naczyniu jest rejestrowane w odstępach 1 s. Badanie prowadzi się do osiągnięcia punktu końcowego, czyli spadku ciśnienia o 10% od wartości maksymalnej. Test trwa od kilku minut do maksymalnie kilku godzin – w zależności od właściwości badanego obiektu. Artykuł omawia różnice w ocenie stabilności termooksydacyjnej smarów plastycznych oznaczanej wg metody ASTM D8206 z wykorzystaniem dwóch różnych aparatów: PetroOxy i RapidOxy 100. Budowa i sposób działania obu aparatów są zbliżone i zgodne z wymaganiami wyżej wymienionej normy, jednak wyniki uzyskane przy ich wykorzystaniu nie mieszczą się w odtwarzalności metody. W artykule została przedstawiona próba wyjaśnienia przyczyn tego zjawiska.

Słowa kluczowe: RapidOxy, PetroOxy, smar, stabilność oksydacyjna.

ABSTRACT: Under operating conditions, the grease is subject to factors that cause its destruction. The grease fulfilling its basic functions in the lubrication system is primarily exposed to high temperatures. The predominant aging process which directly affects the service life of the grease is oxidation. Thermal oxidation stability has a decisive influence on the quality and duration of lubricating greases service life in friction nodes and lubrication systems. In 2018, a new test procedure to determine the oxidation stability of plastic greases according to ASTM D8206 (*Standard Test Method for Oxidation Stability of Lubricating Greases – Rapid Small-Scale Oxidation Test RSSOT*) was published. The test method relies on placing a lubricant sample (4.00 ± 0.01 g) in a glass vessel at ambient temperature. A glass vessel with grease is placed in the reaction chamber of the test apparatus and the chamber is filled with oxygen to a pressure of 700 ±5 kPa. The reaction chamber is heated to a preset temperature (140 or 160°C). The pressure in the vessel is recorded at intervals of 1 s. The test is carried out until the end point is reached, which is a pressure drop of 10% from the maximum value. The test lasts from a few minutes to a maximum of several hours depending on the properties of the tested object. This paper discusses the differences in the evaluation of the thermo-oxidative stability of plastic greases determined according to the ASTM D8206 method, using two different apparatuses: PetroOxy and RapdOxy 100. The construction and operation of both instruments is similar and conforms to the requirements of the above-mentioned standard, however, the obtained results of tests performed with these instruments are not consistent with the reproducibility of the method. The article attempts to explain the causes of this phenomenon.

Key words: RapidOxy, PetroOxy, grease, oxidation stability.

Autor do korespondencji: D. Sacha, e-mail: dariusz.sacha@inig.pl

Artykuł nadesłano do Redakcji: 11.01.2022 r. Zatwierdzono do druku: 06.04.2022 r.

Wstęp

W Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym od wielu lat prowadzone są badania, których celem jest poszerzenie wiedzy i doświadczenia w zakresie odporności smarów plastycznych na utlenianie, badanej z wykorzystaniem różnych metod.

Podstawową metodą badania odporności smarów na utlenianie jest metoda klasyczna według PN-C-04143 (analogiczna do IP 142, ASTM D942, BS 2000-142, FTM 791.3453) (Krasodomski et al., 2020). Ta klasyczna metoda utleniania smarów w naczyniu ciśnieniowym jest jedyną metodą powszechnie stosowaną od przeszło pół wieku i przywoływaną w wymaganiach dla smarów plastycznych – polega na utlenianiu badanej próbki w ściśle określonych warunkach ciśnienia i temperatury. Badanie prowadzone jest w naczyniu ciśnieniowym, tzw. bombie (rysunek 1a).

Do każdego z pięciu naczynek (rysunek 1b) naważa się po 4,00 g ($\pm 0,01$ g) badanego smaru. Smar rozprowadza się łopatką tak, aby otrzymać równomierną jego warstwę o gładkiej powierzchni. Tak przygotowane naczynka ze smarem umieszcza się na podstawce, a podstawkę – w bombie. Odpowiednio przygotowaną bombę, wyposażoną w manometr (rysunek 1a), podłącza się do butli z tlenem i napełnia w temperaturze otoczenia do ciśnienia 0,7 MPa, po czym powoli wypuszcza się tlen do osiągniecia ciśnienia około 0,05 MPa. Powyższą czynność wykonuje się czterokrotnie w celu usunięcia powietrza z bomby. Następnie jeszcze raz napełnia się bombę do ciśnienia 0,8 MPa i pozostawia się ją na co najmniej 6 godzin w celu sprawdzenia szczelności. Kolejno wypuszcza się z bomby część tlenu, tak aby uzyskać w temperaturze 100°C ciśnienie 0,8 MPa. Bombę wstawia się do termostatu ogrzanego do temperatury 100°C ($\pm 0,1$ °C). Od tego momentu notuje się co 2 godziny ciśnienie tlenu w bombie aż do osiągnięcia stałego, maksymalnego ciśnienia, utrzymującego się w bombie przez nie krócej niż 2 godziny. Moment ten uważa się za początek pomiaru. Od chwili osiągnięcia maksymalnego ciśnienia dokonuje się odczytu bieżącego ciśnienia nie rzadziej niż co 18 godzin. Badanie prowadzi się przez 100 godzin.

Z uwagi na fakt, że jest to metoda energochłonna, wymagająca dużego nakładu pracy i czasu (badania powyżej 100 godzin), zaczęto poszukiwać innych możliwości oznaczenia tego parametru.

W przemyśle paliwowym od wielu lat do badania stabilności oksydacyjnej paliw, zarówno benzynowych, jak i olejów napędowych, stosowana jest metoda oparta na naczyniu ciśnieniowym i okresie indukcyjnym.

Metoda ta powstała na podstawie wcześniej stosowanych metod badania stabilności oksydacyjnej benzyn zgodnie z normami ISO 7536, ASTM D525, IP 40.

Rysunek 1. Aparat do oznaczania odporności na utlenianie według PN-C-04143: a) aparat, b) podstawka (fot. INiG – PIB) **Figure 1.** Apparatus for determining the resistance to oxidation according to PN-C-04143: a) apparatus, b) holder

(Photo: INiG - PIB)

Badanie stabilności oksydacyjnej paliw – podobnie jak w przypadku metody klasycznej badania odporności termooksydacyjnej smarów PN-C-04143 – przebiega pod ciśnieniem, a sam proces utleniania jest przyspieszony podwyższoną temperaturą badania i obecnością tlenu w komorze testowej.

Metodyka badania oraz aparat pomiarowy przeznaczony do badania paliw opisany został w normach badawczych:

- do oznaczania stabilności oksydacyjnej paliw do silników o zapłonie iskrowym od 2009 r. stosowana jest norma ASTM D7525 Standard Test Method for Oxidation Stability of Spark Ignition Fuel – Rapid Small Scale Oxidation Test (RSSOT);
- do oznaczania stabilności oksydacyjnej paliw do silników wysokoprężnych o zapłonie samoczynnym stosowana jest opracowana w 2010 r. metoda PN-EN 16091 Ciekłe przetwory naftowe – Paliwa i mieszaniny ze średnich destylatów naftowych i estrów metylowych kwasów tłuszczowych (FAME).

Normy te opisują metodykę badawczą oraz przyrząd pomiarowy, za pomocą którego można wykonać pomiar stabilności oksydacyjnej. Wymagania zawarte w normie PN-EN 16091:2011 w pkt 6 i w załączniku A mówią o tym, że aparat musi być wyposażony w:

- automatyczną kontrolę parametrów;
- szybko ogrzewające się naczynie ciśnieniowe osiągające temperaturę badania w czasie krótszym niż 300 s;
- czujnik ciśnienia umożliwiający pomiar ciśnienia w zakresie od 1 kPa do 2000 kPa z dokładnością 1 kPa;
- czujnik temperatury umożliwiający odczyt z dokładnością do 0,1°C;
- rejestrator ciśnienia i temperatury w zbiorniku ciśnieniowym umożliwiający zapis w odstępach co 1 s;
- zawory wlotowe i wylotowe tlenu oraz układ automatycznego zwolnienia ciśnienia na końcu testu;
- wentylator chłodzący naczynie ciśnieniowe z temperatury badania do temperatury otoczenia przez przepływ powietrza.
 W 2011 r. jedynym przyrządem przystosowanym do wy-

konywania oznaczenia stabilności oksydacyjnej według tej metody był aparat PetroOxy firmy Petrotest (rysunek 2).

Rysunek 2. Aparat PetroOxy do oznaczania stabilności termooksydacyjnej (fot. INiG – PIB)

Figure 2. The PetroOxy tester for determination of the oxidation stability (Photo: INiG – PIB)

Do wykonania oznaczenia stabilności oksydacyjnej z wykorzystaniem tego aparatu wymagana jest mała ilość próbki, tj. około 5 ml. Zasada metody badawczej opiera się na pomiarze zmian ciśnienia w szczelnie zamkniętym naczyniu reakcyjnym. Do aluminiowego, pokrytego warstwą złota naczynia reakcyjnego wprowadza się 5 ml badanej próbki, a następnie – po szczelnym zamknięciu pokrywą – napełnia się je tlenem do uzyskania ciśnienia 700 kPa (±5 kPa) (w temperaturze otoczenia). Naczynie ciśnieniowe wraz z próbką podgrzewa się do temperatury 140°C. Ciśnienie w naczyniu jest rejestrowane w odstępach 1 s do osiągnięcia punktu końcowego, czyli spadku ciśnienia o 10% od wartości maksymalnej. Test trwa od kilku minut do maksymalnie kilku godzin – w zależności od właściwości badanego obiektu. Po zakończeniu testu dane za pomocą interfejsu do transmisji przesyłane są do komputera, gdzie są przetwarzane i przedstawiane w formie wykresu (rysunek 3).

Przyrząd PetroOxy w założeniu konstruktorów tego aparatu ma również możliwość badania stabilności termooksydacyjnej smarów plastycznych. Wyposażony jest w teflonowe naczynia na próbki smarów, a w programie sterującym (menu) posiada zaprogramowaną funkcję badania stabilności termooksydacyjnej smarów.

Mimo braku znormalizowanych procedur badawczych wielu użytkowników tego aparatu w trakcie badań naukowych czy prac wdrożeniowych wykorzystywało i wykorzystuje go nadal do oznaczania odporności na utlenianie smarów plastycznych. Prowadzono również badania porównawcze metod oznaczania stabilności termooksydacyjnej smarów plastycznych oznaczanych według metody klasycznej i zmodyfikowanej (z zastosowaniem naczynka teflonowego) metody PN-EN 16091:2011 oraz za pomocą aparatu PetroOxy (Krasodomski et al., 2018, 2019).

Instytut Technologii Eksploatacji – Państwowy Instytut Badawczy (obecnie w Sieci Łukasiewicz) prowadził prace badawcze smarów plastycznych z wykorzystaniem aparatu PetroOxy. W pracy pt. *Badanie przemian chemicznych środków smarowych* wykorzystano ten aparat do wyznaczenia stabilności termooksydacyjnej smarów i porównano wyniki z analizą spektralną FTIR. Uzyskane wyniki, poddane analizie statystycznej, wykazały liniową zależność pomiędzy czasem utleniania a polem powierzchni pod pikiem charakterystycznym dla produktów oksydacji (Pawelec i Siwiec, 2015).

Również w Instytucie Nafty i Gazu – Państwowym Instytucie Badawczym prowadzone były badania, w których do oznaczania stabilności termooksydacyjnej smarów plastycznych wykorzystywano zmodyfikowaną metodę PN-EN 16091:2011 i aparat PetroOxy. Porównywano wpływ rodzaju zagęszczacza na odporność smarów na utlenianie. Test prowadzono temperaturach 100°C i 140°C oraz pod ciśnieniem 800 kPa (Trzaska et al., 2016). Powstały prace dotyczące stabilności termooksydacyjnej smarów na bazie olejów o charakterze parafinowym (Trzaska et al., 2016). Badane były smary litowe i polimocznikowe na bazie olejów o charakterze naftenowym (Trzaska et al., 2017), smary litowe kompleksowe (Skibińska i Żółty, 2018) oraz smary bentonitowe (Skibińska et al., 2018).

W 2018 r. ukazała się nowa procedura badawcza określająca stabilność oksydacyjną smarów plastycznych – ASTM D8206.

Metoda ASTM D8206 służy do oznaczania stabilności oksydacyjnej smarów w małej skali metodą szybkiego utleniania

(ang. *rapid small-scale oxidation*, RSSOT) poprzez pomiar okresu indukcyjnego.

Metoda badania polega na umieszczeniu w temperaturze otoczenia próbki smaru (4,00 g (\pm 0,01 g)) w szklanym naczynku (rysunek 4b), a następnie w komorze reakcyjnej aparatu (rysunek 4a), napełnieniu komory tlenem do ciśnienia 700 kPa (\pm 5 kPa). Komora reakcyjna jest ogrzewana do zadanej temperatury (140°C lub 160°C). Analogicznie jak w aparacie PetroOxy ciśnienie w komorze wzrasta wraz z ogrzewaniem, a następnie spada w miarę zużywania tlenu do utleniania próbki. Ciśnienie w naczyniu jest rejestrowane w odstępach 1 s aż do osiągnięcia punktu załamania. Czas upływający od początku oznaczania do punktu załamania jest okresem indukcyjnym w temperaturze badania.

Rysunek 3. Typowy wykres przebiegu dla szybkiego testu utleniania w małej skali (RSSOT)

Figure 3. Typical test flow chart for Rapid Small-Scale Oxidation Test (RSSOT)

Wymagania odnośnie do aparatury badawczej służącej do oceny stabilności termooksydacyjnej zawarte w normie ASTM D8206-18 w pkt 6 mówią o tym, że aparat musi być wyposażony w:

- automatyczną kontrolę parametrów;
- szybko ogrzewające się naczynie ciśnieniowe;
- czujnik ciśnienia zdolny do pomiaru ciśnień do 1800 kPa;
- czujnik temperatury umożliwiający odczyt z dokładnością do 0,1°C;
- rejestrację ciśnienia i temperatury w zbiorniku ciśnieniowym w sposób ciągły podczas testu;
- zawory wlotowe i wylotowe tlenu oraz układ automatycznego zwolnienie ciśnienia na końcu testu;
- wentylator chłodzący naczynie ciśnieniowe z temperatury badania do temperatury otoczenia przez przepływ powietrza.

Dodatkowe informacje dotyczące aparatury badawczej autorzy normy ASTM D8206-18 zawarli w aneksie 1. Mówią one o objętości wewnętrznej naczynia ciśnieniowego oraz o tym, że materiały użyte do wykonania naczynia ciśnieniowego muszą być odporne na korozję. Autorzy podali również informację na temat uszczelnienia, które powinno być wykonane z materiału odpornego na działanie tlenu i wysokiej temperatury; zazwyczaj jest to kauczuk fluorowy FPM/FKM pokryty politetrafluoroetylenem (PTFE). Według autorów normy jedynym aparatem spełniającym te wymagania jest aparat RapidOxy 100.

Rysunek 4. Aparat RapidOxy 100 do oznaczania stabilności termooksydacyjnej według ASTM D8206-18: a) aparat, b) naczynie szklane (fot. INiG – PIB)

Figure 4. The RapidOxy 100 instrument for the determination of thermo-oxidation stability: a) apparatus, b) glass vessel (Photo: INiG – PIB)

Przeprowadzona w INiG – PIB analiza pokazała, że wszystkie zawarte w normie wymagania spełnia również aparat PetroOxy firmy Petrotest.

Normy ASTM D 7525 i ASTM D7545, w których opisany jest proces oceny stabilności termooksydacyjnej olejów napędowych i benzyn na podstawie okresu indukcyjnego z wykorzystaniem aparatu PetroOxy, przywołują ten sam schemat budowy wewnętrznej aparatu co norma ASTM D8206.

Aparaty RapidOxy 100 i PetroOxy według specyfikacji producenta (tabela 1) nie mają istotnych różnic w budowie oprócz materiału, z którego wykonana jest komora testowa. W RapidOxy 100 jest to stal nierdzewna, a w PetroOxy – aluminium pokryte złotem. Zarówno stal nierdzewna, jak i aluminium pokryte złotem spełniają wymagania normy ASTM D8206-18, gdyż są materiałami odpornymi na korozję. Również w broszurach informacyjnych producenta zawarto informację, że zasada działania aparatu RapidOxy 100 opiera się na normach ASTM D7525, ASTM D7545 i IP 595 (Anton Paar, 2018a, 2018b, 2018c). Stąd wniosek, że oba aparaty, według wymagań normy ASTM D8206-18, mogą być stosowane do oznaczania

Tabela 1. Porównanie specyfikacji aparatów RapidOxy 100 i PetroOxy na podstawie instrukcji producentów Tabela 1. Comparison of RapidOxy 100 and PetroOxy specifications based on the manufacturers' instructions

Specyfikacja	RapidOxy 100	PetroOxy						
Normy	ASTM D8206 Zgodny z ASTM D7625, ASTM D7545, PN-EN 16091, IP 595	ASTM D7625, ASTM D7545, PN-EN 16091, IP 595						
Rodzaj próbek	próbki płynne, stałe i półstałe	paliwa płynne (benzyna, olej napędowy, biodiesel/FAME i mieszanki)						
Temperatura pracy	do 180°C	do 160°C lub do 200°C						
Zakres ciśnienia	do 18	00 kPa						
Utrzymanie warunków badania	z dokładnością do 0,5°C	z dokładnością do 0,5°C						
Komora testowa	stal nierdzewna	aluminium, pokryta warstwą złota						
Wymiary komory testowej [mm]	$\varphi = 62, 53, h = 3,$	$\Phi = 47, H = 11, 4$						
Objętość próbki	5 ml lub 4 g	5 ml						
Ponowne chłodzenie	wentylator i aktywny	Peltier, automatycznie						
Bezpieczeństwo	zakrętka, pokrywa zabezpieczająca	i izolująca, odcięcie od przegrzania						
Zasilanie	115 V / 230 V, 50 Hz / 60 Hz, 600 W							
Podłączenie tlenu	minimum 800 kPa							
Pamięć wewnętrzna	nieograniczona; 100 pomiarów; następne zostają nadpisane	20 wyników testów; 16000 zestawów danych ciśnienie-temperatura						
Interfejs	RS-232							
Wymiary [mm]	200 × 400 × 250	$240 \times 400 \times 260$						
Waga	<9 kg	11 kg						
Bezpiecznik termiczny	odcinający obwód podgrzewacza; próg temperatury maks. 216°C; maksymalny prąd znamionowy 10 A przy 250 V	odcinający obwód podgrzewacza; próg temperatury >182°C (wersja standardowa); próg temperatury >220°C (wersja wysokotempe- raturowa); maksymalny prąd nominalny 15 A przy 250 V						
	błąd max. 0,6%	o, pełnoskalowy						
Czujnik ciśnienia	zakres pomiaru 0–34,5 bar (500 psi); dopuszczalny zakres roboczy: 0–18 bar; błąd max. ±3% FSS							
Czujnik temperatury	Pt100, klasa 1/3 DIN B, EN 60751; zakres pomiaru 0°C do +180°C; dopuszczalny zakres temperatury roboczej: temperatura pokojowa – 180°C; błąd: (klasa 1/3B) = ±(0,1 + 0,0017 × T(°C)); błąd: 150 ±0,36°C; 100 ±0,27°C	Pt100, klasa 1/3 DIN B, EN 60751; zakres pomiaru 0°C do +200°C; dopuszczalny zakres temperatury roboczej: temperatura pokojowa – 200°C; błąd: (klasa 1/3B) = ±(0,1 + 0,0017 × T(°C)); błąd: 150 ±0,36°C; 100 ±0,27°C						

stabilności termooksydacyjnej smarów plastycznych. Poniżej przedstawione zostały wyniki badania odporności na utlenianie smarów szybkim testem w małej skali według ASTM D8206 z wykorzystaniem aparatów RapidOxy 100 i PetroOxy.

Metodyka i wyniki badań

Do testów wykorzystano szeroką gamę smarów dostępnych na rynku. Smary dobrano tak, by reprezentowały różne gatunki (według rodzajów zagęszczaczy), a ich baza olejowa miała różny charakter chemiczny i różną lepkość. Przeprowadzono badania na 26 próbkach różnych smarów (charakterystykę smarów zestawiono w tabeli 2). Porównano wyniki odporności smarów na utlenianie metodą przyspieszoną, w dwóch temperaturach zalecanych w ASTM D8206, wykorzystując dwa aparaty: RapidOxy 100 (przywołany w normie ASTM D8206) i PetroOxy.

Badania wykonano zgodnie z warunkami:

- temperatura: 140°C (±0,5°C) oraz 160°C (±0,5°C);
- ciśnienie tlenu w temperaturze 20°C (±5°C): 700 kPa (±5 kPa);
- naczynko szklane, dostarczane przez firmę Anton Paar, zgodne z wymiarami podanymi w normie ASTM D8206;
- ilość próbki smaru w naczynku szklanym: 4,00 g (±0,01 g);
- liczba naczynek: 1;

zakończenie badania: spadek ciśnienia o 10% (od ciśnienia maksymalnego).

Dla każdej próbki smaru pomiary wykonano dwukrotnie. Jako wynik badania podano średnią arytmetyczną dwóch pomiarów, mieszczących się w powtarzalności normatywnej. Wyniki przedstawiono w tabelach 3 i 4 oraz na rysunku 5.

Na podstawie średnich wyników (otrzymanych z pomiarów wykonanych z wykorzystaniem obu aparatów) obliczono, czy wyniki uzyskane z zastosowaniem aparatów RapidOxy 100 i PetroOxy mieszczą się w odtwarzalności metody ASTM D8206.

Porównanie wyników odporności na utlenianie uzyskanych z wykorzystaniem dwóch aparatów pozwala stwierdzić, że dla przebadanych handlowych próbek smarów:

 w badaniu w temperaturze 140°C dla 3 próbek uzyskane wyniki mieszczą się w odtwarzalności metody;

- w badaniu w temperaturze 160°C tylko dla 1 próbki uzyskane wyniki mieszczą się w odtwarzalności metody;
- wyniki uzyskane z wykorzystaniem aparatu RapidOxy 100 są w większości przypadków wyższe niż uzyskane z wykorzystaniem aparatu PetroOxy, współczynnik *Ra/Pe* wynosi >1,0;
- wyniki uzyskane z wykorzystaniem aparatu RapidOxy 100 są niższe niż uzyskane z wykorzystaniem aparatu PetroOxy dla 3 próbek: nr 6 i nr 27 w obu temperaturach oraz próbki nr 28 w temperaturze 160°C.

Firma Anton Paar również prowadziła badania porównawcze aparatów PetroOxy i RapidOxy 100. Testowano próbki wosków. Zostały przetestowane cztery próbki wosków w temperaturze 140°C i pod ciśnieniem 700 kPa.

Uzyskane wyniki pokazały, że aparat RapidOxy 100 daje zdecydowanie dłuższe czasy stabilności oksydacyjnej.

Próbka	Zakres temperatury	Olei bazowy	Lep ¹ [mn	kość n²/s]	Zageszczacz	Penetracja [mm/10]	Temperatura kroplenia
nr	pracy od/do [°C]		L 40	L 100		klasa konsystencji	[°C]
1	-30/120	mineralny			litowy	220–250	>190
2	-20	mineralny	115,0	12,20	polimocznikowy	NLGI 2	260
3	-30/60	rzepak/PAO	38,0	8,00	wapniowy	405-445	>120
4	-51/179	PFPE	60,0	9,00	PTFE	NLGI 2	nie ma
5	-30/250	syntetyk	_	—	PTFE	NLGI 2	nie ma
6	-35/160	mineralny	_	_	litowy kompl.	NLGI 2	>240
9	-30/60	rzepak/PAO	38,0	8,00	wapniowy	385-400	>120
12	_	ether	103,0	13,00	mocznikowy	NLGI 2	>230
13	-50/120	syntetyk, estrowy	11,0	3,30	litowy	NLGI 1,5	180
14	-40/180	estrowy	100,0 11,00		polimocznikowy	250-280	>250
17	-28/200	mineralny	133,0	13,00	Ca-sulfonian	NLGI 2	>280
18	-50/150	polyoester diester	26,0	5,10	litowy	250	190
20	-50/120	PAO	30,0	5,90	barowy kompl.	NLGI 2	>240
21	-20/140	mineralny	115,0	_	litowy kompl.	NLGI 3	230
22	-40/150	PAO	46,7	7,75	dimocznikowy	235	>270
24	-40/180	estry polioli	30,5	5,40	dimocznikowy	NLGI 2	>250
25	-50/80	mineralny naftenowy	9,1	2,30	glinowy kompl.	NLGI 2	>220
26	-30/120	wazelinowy	18,0	3,70	glinowy kompl.	NLGI 2	>220
27	-20/200	mineralny	500,0	_	bentonitowy z Cu	310-340	>280
28	100/200	mineralny	591,0	34,50	bentonitowy	NLGI 2	>280
29	-30/180	mineralny	460,0	-	Ca-sulfonian	302	>300
30	-40/150	mineralny i PAO	80,0	_	litowy kompl.	356	>240
31	-50/120	estrowy i mineralny	15,5	3,50	litowy	NLGI 2	190
32	-40/120	ester syntetyczny, bio	120,0	_	wapniowo-litowy	NLGI 1	>120
33	-25/120	mineralny	68,0	_	litowy	NLGI 1	>180
34	-50/180	PAO	46,7	7,80	litowy kompl.	285	290

 Tabela 2. Charakterystyka próbek smarów na podstawie informacji i kart technicznych producentów/dostawców smarów

 Table 2. Characteristics of lubricant samples based on information and technical sheets from lubricant manufacturers/suppliers

Tabela 3. Porównanie wyników odporności smarów na utlenianie wykonane w temperaturze 140°C z wykorzystaniem dwóch aparatów (na niebiesko zaznaczono wyniki mieszczące się w odtwarzalności metody)

Table 3. Comparison of the results of the evaluated lubricants' resistance to oxidation carried out on two instruments, obtained at a tem-
perature of 140°C (results falling within the reproducibility range of the method are marked blue)

Próbka nr	RapidOxy	PetroOxy	Średnia X	Odtwarzalność R = 0,158 × X	X - 0,5R	X+0,5R	Współczynnik <i>Ra/Pe</i>
1	1270	918	1094	173	1007	1180	1,38
2	1489	1094	1291	204	1189	1393	1,36
3	100	81	91	14	83	98	1,23
4	2698	1329	2013	318	1854	2172	2,03
5	2152	2100	2126	336	1958	2294	1,03
6	607	1029	818	129	753	882	0,59
9	77	53	65	10	60	70	1,47
12	1805	1099	1452	229	1337	1567	1,64
13	1797	1034	1415	224	1303	1527	1,74
14	762	563	662	105	610	714	1,35
17	1056	748	902	142	830	973	1,41
18	2379	1512	1945	307	1792	2099	1,57
20	1938 1285	1611	255	1484	1738 1507	1,51	
21	1786 1007 1321 867		1396	221		1286	1,77
22			1094	173	1007	1180	1,52
24	1296	811	1053	166	970	1136	1,60
25	619	443	531	84	489	573	1,40
26	1883	926	1404	222	1293	1515	2,03
27	243	265	254	40	234	274	0,92
28	213	199	206	33	190	222	1,07
29	884	654	769	122	708	830	1,35
30	634	447	541	85	498	583	1,42
31	2431	1431	1931	305	1778	2083	1,70
32	215	137	176	28	162	190	1,58
33	1431	888	1159	183	1068	1251	1,61
34 1795		1085	1440	227	1326	1553	1,65

Tabela 4. Porównanie wyników odporności smarów na utlenianie wykonane w temperaturze 160°C z wykorzystaniem dwóch aparatów (na niebiesko zaznaczono wyniki mieszczące się w odtwarzalności metody)

Table 4. Comparison of the results of the evaluated lubricants' resistance to oxidation carried out on two instruments, obtained at a temperature of 160°C (results falling within the reproducibility ranger of the methods are marked blue)

Próbka nr	RapidOxy	RapidOxy PetroOxy		Odtwarzalność R = 0,158 × X	X-0,5R	X+0,5R	Współczynnik <i>Ra/Pe</i>
1	357	299	328	52	302	354	1,19
2	647	439	543	86	500	585	1,47
3	39	25	32	5	29	34	1,54
4	1209	1209 955		171	996	1167	1,27
5	1506 160	1182	1344	212	1238	1450	1,27
6		358	259	41	238	279	0,45
9	33	20	26	4	24	28	1,67
12	1005	1005 768 886		140	816	956	1,31
13	657	446	551	87	508	595	1,47
14 296		244	270	43	248	291	1,22

cd. Tabela 4/cont. Table 4

Próbka nr RapidOxy		PetroOxy	Średnia X	Odtwarzalność R = 0,158 × X	X - 0,5R	X+0,5R	Współczynnik <i>Ra/Pe</i>	
17	315	245	280	280 44		302	1,29	
18	1308	879	1094	173	1007	1180	1,49	
20	857	664	760	120	700	820	1,29	
21	623	337	480	76	442	518	1,85	
22	777	531	654	103	602	705	1,46	
24	639	483	561	89	516	605	1,32	
25	175	175	120	147	23	136	159	1,46
26	309 264		287	45	264	309	1,17	
27	176	225	200	32	184	216	0,78	
28	141	141 193		26	154	180	0,73	
29	431	431	355	393	62	362	424	1,22
30	248	167	207	33	191	224	1,49	
31	1193	775	984	155	906	1062	1,54	
32	121	84	102	16	94	110	1,44	
33	363	302	332	52	306	358	1,20	
34	827	584	705	111	649	761	1,42	

Rysunek 5. Odporność na utlenianie próbek smarów według ASTM D8206 w dwóch temperaturach i z wykorzystaniem dwóch aparatów

Figure 5. Oxidation stability of lubricant samples according to ASTM D8206 at two temperatures, determined with the use of two devices

Współczynnik *Ra/Pe* wyniósł w tych badaniach średnio aż 1,4. Producent aparatu wytłumaczył to zjawisko gorszym transferem ciepła, gdyż w aparacie RapidOxy 100 użyto szklanego naczynia na próbkę (Anton Paar, 2018a, 2018b, 2018c).

W badaniach w niniejszej pracy zarówno w testach prowadzonych z wykorzystaniem aparatu PetroOxy, jak i aparatu RapidOxy zastosowano te same szklane naczynia testowe zalecane normą ASTM D8206.

Różnice w wynikach stabilności oksydacyjnej można zaobserwować również na dostarczonych przez producenta aparatury olejach weryfikacyjnych. Wyniki stabilności termooksydacyjnej dla olejów weryfikacyjnych uzyskane za **Tabela 5.** Wyniki stabilności termooksydacyjnej dla olejów weryfikacyjnych Batch nr 4251709 (fragment Certyfikatu firmy Anton Paar)

Table 5. The results of thermo-oxidative stability tests for Batch

 No. 4251709 verification oils (part of the Anton Paar Certificate)

pomocą obu aparatów różnią się o od 6% do 10% (tabela 5). Zaznaczyć należy również fakt, że jedyny dostępny u producenta aparatury olej weryfikacyjny pozwala ocenić poprawność działania aparatu jedynie dla niskich wartości stabilności oksydacyjnej – około 100 min.

Dla stabilności oksydacyjnej znacznie wyższej (kilka godzin, uzyskiwanych dla smarów plastycznych) brak jest jakiejkolwiek substancji weryfikującej o znanej i przypisanej do niej wartości stabilności.

Ocena przemian chemicznych zachodzących w smarach plastycznych podczas badania stabilności termooksydacyjnej

W celu porównania zmian zachodzących w czasie oznaczania stabilności termooksydacyjnej różnymi metodami przeprowadzono analizę spektralną w podczerwieni (FTIR), rejestrowano widma transmisyjne smarów przed testem i po nim. Analizowano widma 24 smarów po testach w odniesieniu do widm olejów przed testem oraz porównywano je między sobą. Ze względu na postać próbek zastosowano demontowalną kuwetę selenkową z przekładką 0,1 mm – przykładowe widmo zaprezentowano na rysunku 6, a w przypadku gdy obserwowane pasma były zbyt intensywne, rejestrowano widma FTIR-ATR.

W 11 przypadkach warunki pomiaru umożliwiły tylko półilościowe porównanie uzyskanych widm. W przypadku 15 smarów (smary kompleksowe, litowe, polimocznikowe, sulfonianowe) możliwa była ocena procesów utlenienia na

Rysunek 6. Widma FTIR dla próbek przykładowego smaru litowego, świeżego i po testach – demontowalna kuweta selenkowa z przekładką 0,1 mm

Figure 6. FTIR spectra for samples of exemplary lithium grease, fresh and after testing – a detachable ZnSe cuvette with a 0.1 mm spacer

Rysunek 7. Przykładowe różnicowe widmo FTIR dla próbki smaru po teście RapidOxy w odniesieniu do smaru świeżego (smar 1) – demontowalna kuweta selenkowa z przekładką 0,1 mm **Figure 7.** Exemplary differential FTIR spectrum for a lubricant sample after the RapidOxy test with respect to fresh lubricant

(lubricant 1) – a detachable ZnSe cuvette with a 0.1 mm spacer

podstawie analizy widm różnicowych (stopnia utlenienia) – przykładowe widmo zaprezentowano na rysunkach 6 i 7.

Równocześnie, w przypadku zaobserwowania w widmach transmisyjnych w warunkach pomiaru zbyt intensywnych pasm w ocenianych zakresach analizowano widma FTIR-ATR próbek smarów. Przykładowo, w przypadku zaobserwowania silnych pasm karbonylowych (np. bazy lub komponenty estrowe obecne w smarze) ocena była wyłącznie jakościowa i polegała na uszeregowaniu smarów pod kątem stopnia ich degradacji/ utlenienia związanej z generowaniem grup karboksylowych w procesach utleniania (absorbancja dla długości fali około 1710 cm⁻¹). Wyniki zaprezentowano w tabeli 6.

Porównanie wyników liczbowych oceny FTIR stopnia utlenienia/degradacji próbek smarów uzyskanych metodą przyśpieszoną w małej skali według ASTM D8206 (RapidOxy 100) z wynikami dla próbek uzyskanymi metodą ASTM D8206 (PetroOxy) zostało przedstawione na rysunku 8.

Rysunek 8. Porównanie stopnia utlenienia/degradacji [abs/0,1 mm] smarów po testach przyśpieszoną metodą utlenienia w małej skali ASTM D8206 z wykorzystaniem aparatu Rapidoxy 100/Petrooxy w 140°C i 160°C po odrzuceniu wyników odstających

Figure 8. Comparison of the oxidation/degradation level [abs/0.1 mm] of lubricants after the small-scale accelerated oxidation test ASTM D8206 using the Rapidoxy 100/Petrooxy instrument at 140°C and 160°C after excluding outlier results

	Ξ_
Τ.	H
E	õ
$\tilde{\mathbf{c}}$	S.
30	16
16	_
L.	S
8	18
∞	ι Έ
5	0
sie	- B
ĕ	g
- Par	12
Z	Je
3	4
ĺ.	.ц
ý	S
ar	Ē
Е	്ല
S	Ē
-5-	Ľ,
Ŋ	F
ar	ĕ
ac	SS
р.	Ĕ
ia.	he
an	E
-ji	of
lei	ŝ
ut	SSE
· =	ğ
Ц	ö
SS	D D
S	ū
2	ē
d	ati
N	id
-h	X
ž	0
an	Å
ąz	0
- <u>7</u>	Ĕ
Ñ	eq
Ś	at
H	ы
E.	l r
H	Ĕ
5	00
na	ğ
-tp	~
- <u>7</u> -	Ħ
2	F
Ċ	H
5	ia
8	ц
<u>ē</u> .	e
E.	fe
,	lif
2	0
2	Ę,
E C	ū
as	
d L	p
-G-	an
Σ.	ã,
ar	ğ
Š	ĕ
хC	e
Ë	ps g
Se	Ö
do	Je P
õ	t H
DI.	of
Je	>
M	ar
sta	Ξ
ğ	E
N	Su
6.	ير في
a	9
<u>e</u>	le
ab	ab
Ĥ	E

		D8206 doxy)	160°C			1714 0,14820	1716 0,2259	/ego); enienia,			1712 0,13731) cm ⁻¹ (estrowego); enienia,	1710 (brak pasma) 0,56024			1712 0,21365		1731 0,11931 1712 0,12277 silny ubytek, około 1640		
		ASTM (Rapi	140°C	(cm ⁻¹] 1m] lub opis różnic) cm ⁻¹	1712 0,08847	1716 0,08437	asma 1736 cm ⁻¹ (estrow dzące od produktów utl PN-C-04143 (bomba)	różnic	różnic	1716 0,0931	labienie pasma ok. 1740 dzące od produktów utl N-C-04143 (bomba)	1710 (brak pasma) 0,35629	10 cm^{-1} : 60P < 160R	$10~{ m cm}^{-1}$: 60P $\sim 160{ m R}$	1712 0,14888	10 cm^{-1} : 40P < 160P	1709 0,06762 silny ubytek, około 1640		
2	Metoda	D8206 Joxy)	160°C	położenie pasm [cm ⁻¹] pasm [abs/0,1 mm] lu	1 w zakresie 4000–3100	1740 0,2973 1711 0,26006	1716 0,23459	rwowane poszerzenie p asmo 1712 cm ⁻¹ pocho idku oznaczeń według F	bserwowano istotnych	bserwowano istotnych	1714 0,1177	vielkie poszerzenie i os asmo 1712 cm ⁻¹ pocho idku oznaczeń według I	1710 (brak pasma) 0,52022	nie absorbancji przy 17 nba < 140R \sim 140P < 1	nie absorbancji przy 17 mba < 140 R < 140 P ~ 1	1714 0,23579	nie absorbancji przy 17 mba ~ 140R < 160R < 1	1712 0,19792 silny ubytek, około 1640		
		ASTM (Petro	140°C] intensywność	pasma	1740 0,19810	1714 0,09346	zystkich widmach obse volucji pasm – obecne p najsilniejsze w przypa	nie zao	nie zao	1714 0,08961	aach obserwowane niev volucji pasm – obecne p najsilniejsze w przypa	1710 (brak pasma) 0,25894	porówna świeży < bor	porówna świeży < boi	1710 (brak pasma) 0,06981	porówna świeży < bor	1706 0,06424 silny ubytek, około 1640		
	2	PN-C-04143 (bomba)	100°C			1739 0,19234	1710 (brak pasma) 0,02132	we ws z dekonv	z dekonwc		1714 0,05140	we wszystkich widr z dekonv	1710 (brak pasma) 0,23127			w granicy szumów		1731 0,08882 silny ubytek, około 1640		
			Rodzaj analizy spektralnej		Rodzaj analizy spektralnej			widmo różnicowe	widmo różnicowe	widmo ATR	widmo ATR	widmo ATR	widmo różnicowe	widmo ATR	widmo różnicowe	widmo ATR	widmo ATR	widmo różnicowe	widmo ATR	widmo różnicowe
			Olej bazowy mineralny			mineralny	rzepak / PAO	PFPE	syntetyczny	mineralny	rzepak / PAO	polieter	syntetyczny-estrowy	estrowy	mineral	polyester/diester	PAO			
			Zagęszczacz			litowy	polimocznik	wapniowy	PTFE	PTFE	Li-kompl.	wapniowy	mocznik	litowy	polimocznik	Ca-sulfonian	litowy	Ba-kompl		
			Smar nr				5	3	4	5	9	6	12	13	14	17	18	20		

Metoda		1 D8206 idoxy)		ASTM D8206 (Rapidoxy)	160°C			1710 (brak pasma) 0,06151	1712 0,23131 1699 0,23370	1712 0,51132	1745 -0,24441 1711 0,06005		1714 0,92225	1707 0,1341	1710 0,29059			1712 0,25544									
		ASTM (Rapid	ASTM (Rap		ASTN (Rap	140°C	b opis różnic	d opis różnic cm ⁻¹	l ub opis różnic 0 cm ⁻¹	b opis różnic) cm ⁻¹	bez zmiany	1749 -0,01947 1698 0,13765	1737 0,05666 1712 0,06493	1745 -0,38353	10 cm^{-1} : mba < 160P	1713 0,6278	brak pasma	1709 0,24343	10 cm^{-1} : 60P < 160R	10 cm ⁻¹ : JR < bomba	1712 0,16121						
	Metoda	D8206 Joxy)	160°C	położenie pasm [cm ⁻¹] pasm [abs/0,1 mm] lu	w zakresie 4000–3100	1710 (brak pasma) 0,06063	1712 0,2947 1699 0,25644	1712 0,66333	1745 -0,32588 1711 0,43730	nie absorbancji przy 17 $P \sim 140R \sim 160R < bor$	1712 0,39556	1715 0,15261	1709 0,40752	nie absorbancji przy 17)R < bomba < 140P < 1	nie absorbancji przy 17 $P \sim 140R < 160P < 160$	1713 0,31345											
		ASTM (Petro	140°C] intensywność	pasma	1710 (brak pasma) 0,10708	1747 -0,04705 1698 0,09189	1737 0,14641 1712 0,27630	1741 -0,38353	porówna świeży < 14(1711 0,35225	brak pasma	1710 0,1655	porówna świeży < 140	Porówna świeży < 140	1712 0,13954											
		PN-C-04143 (bomba)	(bomba) 100°C			1710 (brak pasma) 0,04621	1749 -0,02911 1698 0,10512	1716 0,09156	1743 0,49194		1711 0,76065	1713 0,11593	1705 0,10495			1710 brak pasma 0,05296											
		Rodzaj analizy spektralnej			widmo różnicowe	widmo różnicowe	widmo różnicowe	widmo różnicowe	widmo ATR	widmo różnicowe	widmo różnicowe	widmo różnicowe	widmo transmisyjne/ ATR	widmo ATR	widmo różnicowe												
		Olej bazowy			Olej bazowy			-										PAO	mineralny / naftenowy	wazelinowy	mineralny	mineralny	mineralny	mineralny/PAO	estrowy/mineralny	ester syntetyczny, bio	mineralny
			Zagęszczacz			Li-kompl	dimocznik	glin-kompl.	glin-kompl.	bentonit z Cu	bentonit	Ca-sulfonian	Li-kompl	litowy	lit-wapń	litowy											
	Smar nr		Smar nr			21	22	25	26	27	28	29	30	31	32	33											

cd. Tabela 6/cont. Table 6

04/2022

Na podstawie wykresów zaprezentowanych na rysunku 8 można stwierdzić występowanie pewnej korelacji pomiędzy stopniem przemian chemicznych zachodzących podczas porównywanych testów. Stopień korelacji dodatkowo rośnie po odrzuceniu dwóch wyników (1 i 25) dla temperatury 140°C i jednego (26) dla temperatury 160°C. W obu przypadkach R^2 wynosi około 0,9.

Poszukując przyczyn uzyskania różnych wyników na aparatach wykorzystanych do przeprowadzania wyżej wymienionych badań, porównano sposób ich działania, wykonując w dwóch temperaturach testy tzw. ślepej próby – pomiaru bez próbki smaru i naczynka badawczego.

Otrzymane zależności ciśnienia i temperatury od czasu przedstawiono na rysunkach 9 i 10.

Porównując wykres zależności temperatury od czasu dla obu aparatów, można stwierdzić, że zależności te są bardzo podobne

Figure 9. Graph of temperature dependence on time (three repetitions) *R* – RapidOxy 100, *P* – PetroOxy

Rysunek 10. Wykres zależności ciśnienia od czasu (trzy powtórzenia); *R* – RapidOxy 100, *P* – PetroOxy

Figure 10. Graph of pressure dependence on time (three repetitions) *R* – RapidOxy 100, *P* – PetroOxy

i w przypadku obu aparatów warunki badania stabilizują się już po 5 minutach. Nieco szybsze uzyskanie warunków badania w aparacie PetroOxy związane jest z materiałem, z którego zbudowana jest ciśnieniowa komora testowa. Aluminium pokryte złotem znaczne lepiej przewodzi ciepło niż stal nierdzewna.

W przypadku wykresu zależności zmian ciśnienia od czasu można zauważyć, że w aparacie PetroOxy stabilizacja warunków ciśnienia następuje już po około 5 minutach, natomiast w aparacie RapidOxy 100 uzyskanie stabilnych warunków pracy zajmuje prawie 60 minut.

Wnioski

Wzrost ciśnienia w aparatach po ich szczelnym zamknięciu i napełnieniu tlenem do ciśnienia 700 kPa nie jest związany z zamontowanymi w nich systemami regulacji ciśnienia czy rodzajami czujników, lecz zależy jedynie od temperatury komory ciśnieniowej. Powolne dochodzenie do maksymalnego ciśnienia w aparacie RapidOxy 100 świadczy o tym, że zadana temperatura badania (pokazana na rysunku 10) jest uzyskana jedynie w obrębie czujnika temperatury, a nie w całej komorze badawczej. Dopiero po około 1 godzinie temperatura całej komory osiąga temperaturę badania – świadczy o tym uzyskanie stabilizacji ciśnienia.

Zbyt niska temperatura, a w konsekwencji niższe ciśnienie wewnątrz komory reakcyjnej w początkowym, prawie godzinnym etapie badania są przyczyną różnic w wynikach stabilności termooksydacyjnej badanych próbek uzyskanych z wykorzystaniem aparatów PetroOxy i RapidOxy 100.

Przemiany zachodzące w czasie oznaczania stabilności termooksydacyjnej różnymi metodami zachodzą w nieco odmienny sposób. Analiza widm w podczerwieni (FTIR) pozwala stwierdzić, że w przypadku badania z wykorzystaniem aparatu PetroOxy w temperaturze 160°C proces utlenienia przebiega intensywniej niż w przypadku badania z wykorzystaniem aparatu RapidOxy 100. Natomiast w temperaturze 140°C obserwuje się odwrotne zjawisko. Warunki oznaczania według wyżej wymienionych metod są na tyle zbliżone, że przemiany chemiczne powinny przebiegać w większości przypadków podobnie. Należy podjąć dalsze badania w celu wyjaśnienia obserwowanych różnic.

Artykuł powstał w ramach pracy statutowej pt. Ocena stabilności oksydacyjnej smarów plastycznych z wykorzystaniem najnowszych technik badawczych, praca INiG – PIB; nr zlecenia: 0022/TO, TE, TA/2020; nr archiwalny: DK-4100-0010/2020.

Literatura

Anton Paar, 2018a. Brochure: AppIRaport RapidOxy 100, Wax-1. H821A001EN-A.

Anton Paar, 2018b. Brochure: RapidOxy 100. H821P001EN-B. Anton Paar, 2018c. Brochure: RapidOxy 100. H821P002EN-A.

- Krasodomski M., Krasodomski W., Skibińska A., Żółty M., 2018. Badania porównawcze metod oznaczania stabilności termooksydacyjnej smarów plastycznych. *Przemysł Chemiczny*, 9(3): 370–376. DOI: 10.15199/62.2018.3.6.
- Krasodomski M., Krasodomski W., Skibińska A., Żółty M., 2019. Badania porównawcze w zakresie metod oznaczania stabilności termooksydacyjnej olejów bazowych. *Przemysł Chemiczny*, 98(4): 563–568. DOI: 10.15199/62.2019.4.10.
- Krasodomski W., Skibińska A., Żółty M., 2020. Thermal Oxidation Stability of Lubricating Greases. Advances in Science and Technology Research Journal, 14: 75–82. DOI: 10.12913/22998624/122569.
- Pawelec E., Siwiec E., 2015. Praca naukowa pt. "Metody spektroskopowe w praktyce, nowe wyzwania i możliwości". *Praca wykonana w ramach realizacji Programu Strategicznego "Innowacyjne systemy wspomagania technicznego zrównoważonego rozwoju gospodarki"*.
- Skibińska A, Żółty M., 2018. Badanie stabilności termooksydacyjnej smarów plastycznych. Część 3: Kompleksowe smary litowe. *Nafta-Gaz*, 74(1): 61–66. DOI: 10.18668/NG.2018.01.07.
- Skibińska A., Żółty M., Krasodomski W., Dybich K., 2018. Badanie stabilności termooksydacyjnej smarów plastycznych. Część 4: Smary bentonitowe. *Nafta-Gaz*, 74(12): 951–957. DOI: 10.18668/ NG.2018.12.10.
- Trzaska E., Żółty M., Skibińska A., 2016. Badanie stabilności termooksydacyjnej smarów plastycznych. Część 1: Smary na oleju o charakterze parafinowym. *Nafta-Gaz*, 72(11): 984-991. DOI: 10.18668/NG.2016.11.13.
- Trzaska E., Żółty M., Skibińska A., 2017. Badanie stabilności termooksydacyjnej smarów plastycznych. Część 2: Smary na oleju o charakterze naftenowym. *Nafta-Gaz*, 73(1): 49–53. DOI: 10.18668/NG.2017.01.06.

Akty prawne i dokumenty normatywne

- ASTM D525-12a (2019) Standard Test Method for Oxidation Stability of Gasoline (Induction Period Method).
- ASTM D7525-14(2019)e1 Standard Test Method for Oxidation Stability of Spark Ignition Fuel – Rapid Small Scale Oxidation Test (RSSOT).
- ASTM D7545-14(2019)e1 Standard Test Method for Oxidation Stability of Middle Distillate Fuels – Rapid Small Scale Oxidation Test (RSSOT).
- ASTM D8206-18 Standard Test Method for Oxidation Stability of Lubricating Greases Rapid Small-Scale Oxidation Test (RSSOT).
- IP 40: Petroleum products Determination of oxidation stability of gasoline Induction period method
- IP 595: Liquid petroleum products Middle distillates and fatty acid methyl ester (FAME) fuels and blends – Determination of oxidation stability by rapid small scale oxidation method
- ISO 7536:1994 Petroleum products Determination of oxidation stability of gasoline Induction period metod
- PN-C-04143:1956 Przetwory naftowe Smary stałe Badanie odporności na utlenianie.
- PN-EN 16091:2011 Ciekłe przetwory naftowe Paliwa i mieszaniny ze średnich destylatów naftowych i estrów metylowych kwasów tłuszczowych (FAME) – Oznaczanie stabilności oksydacyjnej metodą szybkiego utleniania w małej skali.

Mgr inż. Agnieszka SKIBIŃSKA Starszy specjalista badawczo-techniczny w Zakładzie Olejów, Środków Smarowych i Asfaltów Instytut Nafty i Gazu – Państwowy Instytut Badawczy ul. Lubicz 25 A 31-503 Kraków E-mail: agnieszka.skibinska@inig.pl

Mgr inż. Dariusz SACHA Starszy specjalista badawczo-techniczny w Zakładzie Oceny Właściwości Eksploatacyjnych Instytut Nafty i Gazu – Państwowy Instytut Badawczy ul. Lubicz 25 A 31-503 Kraków E-mail: *dariusz.sacha@inig.pl*

Dr Wojciech KRASODOMSKI Adiunkt w Zakładzie Analiz Naftowych Instytut Nafty i Gazu – Państwowy Instytut Badawczy ul. Lubicz 25 A 31-503 Kraków E-mail: *wojciech.krasodomski@inig.pl*