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Application of machine learning algorithms to predict permeability 
in tight sandstone formations

Zastosowanie metod uczenia maszynowego do przewidywania przepuszczalności 
w formacjach zwięzłych piaskowców typu tight gas

Tomasz Topór

Oil and Gas Institute – National Research Institute

Abstract: The application of machine learning algorithms in petroleum geology has opened a new chapter in oil and gas exploration. 
Machine learning algorithms have been successfully used to predict crucial petrophysical properties when characterizing reservoirs. 
This study utilizes the concept of machine learning to predict permeability under confining stress conditions for samples from tight 
sandstone formations. The models were constructed using two machine learning algorithms of varying complexity (multiple linear 
regression [MLR] and random forests [RF]) and trained on a dataset that combined basic well information, basic petrophysical data, 
and rock type from a visual inspection of the core material. The RF algorithm underwent feature engineering to increase the number 
of predictors in the models. In order to check the training models’ robustness, 10-fold cross-validation was performed. The MLR 
and RF applications demonstrated that both algorithms can accurately predict permeability under constant confining pressure  
(R2 0.800 vs. 0.834). The RF accuracy was about 3% better than that of the MLR and about 6% better than the linear reference 
regression (LR) that utilized only porosity. Porosity was the most influential feature of the models’ performance. In the case of RF, 
the depth was also significant in the permeability predictions, which could be evidence of hidden interactions between the variables 
of porosity and depth. The local interpretation revealed the common features among outliers. Both the training and testing sets had 
moderate-low porosity (3–10%) and a lack of fractures. In the test set, calcite or quartz cementation also led to poor permeability 
predictions. The workflow that utilizes the tidymodels concept will be further applied in more complex examples to predict spatial 
petrophysical features from seismic attributes using various machine learning algorithms. 
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STRESZCZENIE: Zastosowanie algorytmów uczenia maszynowego w geologii naftowej otworzyło nowy rozdział w poszukiwa-
niu złóż ropy i gazu. Algorytmy uczenia maszynowego zostały z powodzeniem wykorzystane do przewidywania kluczowych wła-
ściwości petrofizycznych charakteryzujących złoże. W pracy zastosowano metody uczenia maszynowego do przewidywania prze-
puszczalności w warunkach ustalonego ciśnienia złożowego dla formacji zwięzłych piaskowców typu tight gas. Modele zosta-
ły skonstruowane przy użyciu algorytmów o różnym stopniu komplikacji (wielowymiarowa regresja liniowa – MLR i lasy loso-
we – RF), a następnie poddano je procesowi uczenia na danych zawierających podstawowe informacje o otworze, podstawowe pa-
rametry petrofizyczne oraz typ skał pochodzący z makroskopowego i mikroskopowego opisu próbek rdzeni. Typ skał został roz-
kodowany i poddany procesowi inżynierii cech, aby wydobyć dodatkowe zmienne do modelu. Proces uczenia na zbiorze treningo-
wym został przeprowadzony z wykorzystaniem 10-krotnej kroswalidacji. Uzyskane wyniki pokazują, że oba algorytmy mogą prze-
widywać przepuszczalność z dużą dokładnością (R2 = 0,800 dla MLR vs R2 = 0,834 dla RF). Dokładność modelu RF jest około 3% 
lepsza niż MLR i około 6% lepsza w porównaniu do modelu referencyjnego (model regresji liniowej z jedną zmienną – porowato-
ścią). W przypadku obu modeli porowatość była najistotniejszym parametrem przy przewidywaniu przepuszczalności. Dodatkowo 
w modelu wykorzystującym lasy losowe istotną cechą okazała się głębokość próbki, co może świadczyć o dodatkowych interak-
cjach pomiędzy zmiennymi. Cechą wspólną próbek w zbiorze treningowym i testowym, dla których modele zadziałały ze słabą sku-
tecznością, były porowatość od 3% do 10% i brak spękań. Dodatkowo w zbiorze testowym niska dokładność przewidywań prze-
puszczalności była związana z obecnością cementacji kalcytem i kwarcem. Workflow wykorzystujący stan wiedzy dotyczącej mo-
delowania, którego trzon stanowi pakiet tidymodels, będzie dalej stosowany do prognozowania przestrzennych właściwości petro-
fizycznych na podstawie atrybutów sejsmicznych.

Słowa kluczowe: uczenie maszynowe, lasy losowe, predykcja przepuszczalności.
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Introduction

Permeability is one of the most difficult petrophysical 
properties to determine and predict. It is also a key element in 
the characterization of both conventional and unconventional 
tight reservoirs. Sandstone gas reservoirs are usually defined 
as tight when their permeability is below 0.1 mD. However, 
for many tight sandstone formations, the average permeability 
is often lower than 0.01 mD (Ma et al., 2015). Usually, perme-
ability is measured directly on core samples as a part of routine 
core analysis (RCA), taking into account its stress-dependency 
(McPhee et al., 2015; Such et al., 2015). Many attempts have 
been made to establish a relationship between porosity (or pore 
structure attributes) and permeability for different sedimentary 
basins, including tight sand reservoirs (e.g., Pape et al., 1999; 
Comisky et al., 2007; Such et al., 2007). However, due to the 
complexity of permeability’s function, this parameter cannot 
be fully explained using superficial relationships. 

The recent application of machine learning algorithms in 
petroleum geology demonstrated a new approach to solving 
various issues with characterizing reservoirs (Caté et al., 2017; 
Karpatne et al., 2019). Machine learning algorithms have been 
successfully used to predict reservoir porosity and permeability 
(Rafik and Kamel, 2017; Wu et al., 2018; Ahmadi and Chen, 
2019; Erofeev et al., 2019; Male and Duncan, 2020), water 
saturation (Ao et al., 2019; Wood, 2020), capillary pressure 
(Jamshidian et al., 2018), pore pressure, geomechanical proper-
ties (Naeini et al., 2019), and mineral compositions (Rubo et al., 
2019). Besides the regression problems, machine learning has 
been used for facies and fracture classification (Bhattacharya 
and Mishra, 2018). Unsupervised learning is commonly ap-
plied in rock typing (Ma et al., 2015; Meshalkin et al., 2018; 
Lis-Śledziona, 2019; Topór, 2020).

Machine learning utilizes many algorithms of varying 
degrees of complexity. The most commonly used are linear 
regression, regularized regression, k-nearest neighbors, deci-
sion trees, random forests, gradient boosting, and neural net-
works (Wendt et al., 1986; Baziar et al., 2018; Ao et al., 2019; 
Boehmke and Greenwel, 2020). Most of these algorithms can 
be used for problems of both regression and classification. They 
also perform differently – more sophisticated nonlinear algo-
rithms are always better than simple linear regression. However, 
the improvement of accuracy comes at the expense of interpret-
ability, which is important for model implementation. Recent 
advances in machine learning provide approaches to interpret-
ing so-called “black box” models using the global and local 
explanation strategies (Molnar, 2019; Boehmke and Greenwel, 
2020). Global interpretability helps researchers understand the 
model’s predictions by looking at the importance of its fea-
tures and how influential they are on the model’s predictions  

and performance. As opposed to this holistic view, a local 
interpretation focuses on a particular observation (or a group 
of observations) and features that influence this observations’ 
model prediction. Both approaches are an important part of 
interpretable machine learning (Molnar, 2019).

Among the machine learning methods mentioned above, 
the random forests (RF) algorithm is rapidly gaining attention 
among geoscience researchers and the petroleum commu-
nity (Bhattacharya and Mishra, 2018; Brantson et al., 2018; 
Ao et al., 2019; Aulia et al., 2019; Bhattacharya et al., 2019; 
Rubo et al., 2019; Attanasi et al., 2020). This is mostly due to 
its very good out-of-the-box performance and ability to handle 
data (both nominal and continuous) that are not structurally 
designed (James et al., 2013). The RF algorithm is a modifica-
tion of bagged trees with many de-correlated trees (Boehmke 
and Greenwel, 2020). The decision tree’s growing process is 
performed using the randomization of predictors at each tree 
split (James et al., 2013; Boehmke and Greenwel, 2020). This 
operation reduced variance and improved prediction perfor-
mance (James et al., 2013). It also distinguishes RF from bag-
ging, where all predictors are used at each split. The subset of 
variables for each split (mtry) is one of the RF hyperparameters 
that can be tuned to improve the model’s performance. Detailed 
information about RF algorithms with a particular emphasis on 
their mathematical principles can be found in Louppe (2014).

In this study, multiple linear regression (MLR) and random 
forests (RF) were trained to predict permeability under confin-
ing stress conditions for samples from tight sandstone forma-
tions, using basic well information (depth, basin, and formation 
names), petrophysical data (porosity and grain density), and 
rock type from a visual inspection of the core material. All data 
comes from US Department of Energy data in the public domain 
(Byrnes et al., 2009). The dataset provides a perfect opportunity 
to test the performance of various machine learning models 
on petrophysical data. It is also a valuable dataset with which 
to engineer features and interpret models of a global and local 
scale. Additionally, the paper presents a tidymodel workflow 
for modeling and machine learning using the programming 
language R.

This study is the second in a series about applying machi-
ne learning in the evaluation of unconventional tight reservo-
irs. The results from the first study with elements of unsupe-
rvised learning can be found in Topór (2020).

Methods

The workflow applied in this study utilizes the tidymodels 
packages and the latest state-of-the-art for machine learning 
modeling with R (R Core Team, 2018; Boehmke and Greenwel, 
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2020; Kuhn and Silge, 2020). The workflow consists of several 
steps that are accomplished by exploratory data analysis. It starts 
with data sampling and cross-validation (rsample packages), 
data preprocessing (recipes), model setup (parsnip), and model 
tuning (tune), and ends with model assessment (yardstick). 
All steps are joined together with the workflows package.

Exploratory data analysis and data preprocessing

The modeling process was performed on US Department 
of Energy data in the public domain (Byrnes et al., 2009). The 
data contain tabulated results from the petrophysical analysis 
performed on archive siliciclastic core material from five 
Rocky Mountain basins. The dataset provides a perfect op-
portunity to combine basic well information with petrophysi-
cal data and the petrographic description in order to predict 
permeability under confining stress conditions using different 
machine learning algorithms. Helium porosity at ambient con-
ditions (porosity) and gas permeability collected at 4000 psi 
(k_conf) were measured on the same sample. In addition to 
the porosity and permeability, the analyzed dataset includes 
information about several predictive features, such as grain 
density (gd), basin and formation names (basin, formation), 
depth, and an encoded rock type (rt). The last one comes from 
a visual rock inspection from microscopic and lens observa-
tions on core material and plugs. Each depth interval was 
sampled from one to three times, and collected plugs were 
marked with the letters A, B, and C. In this study, only A 
plugs were used. To add a degree of 
difficulty, the routine permeability was 
also removed from the dataset. Detailed 
information about the dataset and the 
results of the project can be found in 
Byrnes et al. (2009).

The dataset consists of 1,096 ob-
servations and seven variables, four 
of which are of numeric type (k_conf, 
porosity, gd, and depth); the other three 
are categorical (basin, formation, and rt). 
Missing data comprise about 4.5% of 
the original dataset (Fig. 1). Most of 
the missing information (3.01%) comes 
from the outcome variable (k_conf); the 
others are porosity (0.91%) and grain 
density (0.64%). Data imputation was 
skipped from the modeling process (only 
17 observations could be imputed for 
grain density and porosity), and the 
missing data were removed.

Increasing the number of variables can potentially improve 
modeling performance (especially in RF). Keeping that in mind, 
the rock type variable (rt) was decrypted to create another four 
variables. The variable was encoded so that:
• the first digit refers to basic lithology; 
• the second digit represents grain size, sorting, and texture;
• the third digit represents the degree of consolidation, ce-

mentation, and the occurrence of fractures;
• the fourth digit refers to primary sedimentary structures; and
• the fifth digit represents dominant cementation or pore-

filling material. 
The resulting variables are lithology, fractures, sedimentary 

structures, and the pore-filling/cementation. Each of these 
new variables has several categories. For those variables that 
have less numerous categories, the level of the category was 
reduced (lumped) to not exceed five (e.g., pore-filling [sulfide 
pore filling, siderite, phosphate, anhydrite/gypsum, dolomite, 
calcite, quartz, authigenic clay, carbonaceous debris, non-
pore-filling/detrital clay] was reduced to the four levels with 
the most observations and the rest went to the “other” group). 
Observations of the fractures variable composed of the cat-
egories “fractured” and “unfractured” were removed from the 
modeling process due to the limited number of observations 
in the first category (only 18). Also, 21 observations were re-
moved from the lithology variable (one belonging to “shale” 
and 20 to “NA”). The basin and formation names were kept 
from the original database. The only modification was removing 
the “Sand Wash” Basin observations due to the limited number 
of observations. After the target and feature engineering, the 

Fig. 1. Distribution of missing data in the analyzed dataset, using the visdat package
Rys. 1. Rozkład brakujących danych (pakiet visdat)
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final dataset consisted of 1,002 observations and ten variables, 
of which half were of the nominal type.

The goal of the model was to predict permeability under 
constant confining pressure (k_conf) for different tight sandstone 
formations using basic well information, petrophysical data, and 
a simple rock description. Permeability is one of the essential 
rock features that determine reservoir quality (Ma, 2015). It is 
also information that cannot be directly derived from the wireline 
logs. The permeability ranged from 0.000001 mD to 173 mD 
(median: 0.00145 mD), and its distribution was highly right 
(or positively) skewed. Before the modeling process, the out-
come variable had to be log-transformed (as presented in Fig. 2). 

Fig. 2. Distribution of permeability across lithotypes, arranged by 
descending permeability median. The overwhelming majority of 
the samples were unconventional tight rocks (k < 0.1 mD)
Rys. 2. Rozkład przepuszczalności dla poszczególnych litotypów. 
Litotypy zostały uszeregowane przy użyciu mediany przepuszczal-
ności. Zdecydowana większość próbek posiada przepuszczalność 
< 1 mD (skały niekonwencjonalne) 

Fig. 3. Distribution of porosity across lithotypes, arranged by 
descending porosity median
Rys. 3. Rozkład porowatości dla poszczególnych litotypów. 
Litotypy zostały uszeregowane przy użyciu mediany porowatości

Fig. 4. Distribution of grain density across lithotypes, 
arranged by descending gd median (black lines in boxes)
Rys. 4. Rozkład gęstości szkieletowej dla poszczególnych 
litotypów. Litotypy zostały uszeregowane przy użyciu  
mediany gęstości szkieletowej (czarna pionowa linia)

Porosity and pore structure highly influence a rock’s perme-
ability and is as important as permeability in reservoir evaluation 
(Clarkson et al., 2012; Ma, 2015). The dataset’s porosity value 
ranged from 0.3% to 24.9% (median 6.5%). As expected, the high-
est porosity and permeability values were observed for sandstone 
samples and the lowest for silty shale and siltstones (Fig. 3).

The collected data come from an archived siliciclastic core 
from a depth of 124.1 ft (37.8 m) to 16,723.9 ft (5097.4 m). 
Depth can also influence the outcome variable, since a greater 
depth usually indicates higher effective stress and lower perme-
ability (Jones, 1997; Shar et al., 2017). The grain density also 
varies across the analyzed lithotypes, ranging from 2.34 g/cm3 
to 2.84 g/cm3 (Fig. 4). The descriptive statistic for all lithotypes 
is shown in Table 1.

Using the rsample package, the dataset was split into train-
ing and testing sets with a proportion of 0.75 (1002/752/250). 
The 10-fold cross-validation technique was used on the train-
ing set to create ten different resamples of analysis (training) 
and assessment (validation) sets (752/667/75) (Fig. 5). Such 
an approach produces ten different performance metrics, from 
which an average model performance can be calculated. 

Although the data preprocessing was already partially done 
(data reduction, transformation, and creation of additional 
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Fig. 5. Visualization of 10-fold cross-validation
Rys. 5. Wizualizacja procesu kroswalidacji

Table 1. Descriptive statistics for the main petrophysical parameters
Tabela 1. Statystyki opisowe dla głównych parametrów petrofizycznych

Variables n mean sd median min max range skew se

Sandstones

depth [ft] 532 7844.21 3526.27 7017.00 183.20 16723.90 16540.70 0.36 152.88
k conf. [mD] 532 3.02 12.56 0.00 0.00 171.00 171.00 7.86 0.54
porosity [%] 532 9.21 5.23 7.90 0.70 24.90 24.20 0.87 0.23

grain density [g/cm3] 532 2.66 0.03 2.66 2.54 2.78 0.24 0.24 0.00

Shaly sandstones

Depth [ft] 342 7446.60 2926.54 7279.00 124.10 16625.10 16501.00 0.06 158.25
k conf. [mD] 342 0.46 3.26 0.00 0.00 34.00 34.00 8.35 0.18
porosity [%] 342 5.64 4.18 4.70 0.40 21.50 21.10 1.27 0.23

grain density [g/cm3] 342 2.65 0.05 2.66 2.34 2.84 0.50 –1.52 0.00

Siltstones

depth [ft] 97 6808.29 3760.32 6700.10 174.00 16653.80 16479.80 0.27 381.80
k conf. [mD] 97 0.01 0.05 0.00 0.00 0.44 0.44 7.87 0.00
porosity [%] 97 4.47 3.83 3.00 0.30 14.90 14.60 0.95 0.39

grain density [g/cm3] 97 2.64 0.05 2.64 2.36 2.79 0.43 –1.47 0.01

Silty shales

depth [ft] 31 6761.07 4566.49 6577.30 206.00 16626.00 16420.00 0.48 820.17
k conf. [mD] 31 0.00 0.01 0.00 0.00 0.03 0.03 3.56 0.00
porosity [%] 31 3.27 3.38 1.90 0.40 13.50 13.10 1.38 0.61

grain density [g/cm3] 31 2.63 0.07 2.65 2.41 2.75 0.34 –1.00 0.01

n –sample size within this group; sd – standard deviation; se – sample standard error; k conf – gas permeability collected at 4000 psi

variables), the main part of preprocessing was performed with 
the recipes package. Before the modeling process, the outcome 
variable needs to be log-transformed and all numeric variables 
normalized (the center and scale should have a standard devia-
tion of one and a mean of zero). The applied machine learning 
algorithms handle nominal variables, and thus preprocessing, 
and the creation of dummy variables was skipped. All opera-
tions were done on the training set. 

Model specification

The models were trained using MLR and RF algorithms 
based on the same data quality assumptions. Such an ap-
proach allows comparison of the model’s performance and 
selection of the best model. Specification of the model is 
required to define the mode and the engine (parsnip package). 
MLP, by default, has a “regression” mode and the “lm” 
engine comes from the stat package. In this study, RF has 
a “regression” mode and “randomForest” engine from the 
randomForest package. The model specification for RF also 
requires hyperparameters – parameters that control the learn-
ing process – to be set. Because hyperparameters cannot be 
learned from the data, they need to be tuned by assigning 
different values, training different models, and selecting 
based on the best results. 

The main tunable arguments (hyperparameters) for the RF 
model are as follows: 
• mtry – the number of predictors to consider at each split;
• trees – the number of trees contained in the ensemble 

(forest);
• min_n – the minimum number of observations in a node 

for further splitting.
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Out of these three arguments, only mtry and min_n were tuned. 
The mtry parameter is the split-variable randomization feature 
responsible for balancing low tree correlation with predictive 
strength. The min_n parameters control the splitting scheme 
and represent the number of observations needed to keep split-
ting nodes. A high number of trees is recommended to stabilize 
the error rate. The number of trees was set at 1,000 by default. 
A detailed description of each hyperparameter can be found in 
Boehmke and Greenwel (2020). The defined recipes and model 
specifications were combined using the workflows package for 
each model. Workflows are objects that combine all the informa-
tion necessary for the modeling process (Kuhn and Silge, 2020).

Hyperparameter tuning was performed on the resamples data 
using a 30-grid search. This yields 30 possible combinations 
of the mtry and min_n values and 30 different models, each of 
which was checked against the resample data (300 models). The 
grid search identified the best mtry and min_n values for further 
modeling. An mtry of 3 and a min_n of 12 provided the highest 
R2 (rsq) and the lowest standard error (se) among all possibilities.

After the tuning process, the RF model specification was 
updated (accounting for the best hyperparameters) together 
with the workflow. Both models were run on training data 
using defined resamples to get reliable metrics. 

Model performance evaluation 

The MLR and RF models’ performance was evaluated using 
the residual mean standard error (RMSE), mean absolute error 
(MAE), and the rsq provided by the yardstick package. These 
indicators are also the most common metrics used to evaluate 
models (Kuhn and Silge, 2020; Male and Duncan, 2020). Both 
the RMSE and MAE have the same units as the original data, 

and both metrics measure the accuracy. However, because the 
dependent variable was log-transformed, it is hard to determine 
how well these models performed. When the log transformation 
is revoked, the RMSE and MAE take high values that do not 
reflect the actual accuracy. This is because of the high range of 
the permeability value, from 0.000001 mD to 173 mD (MAE of 
1.01 means that on average, the model prediction is wrong by 
2.72 mD; RMSE of 1.47 reflects standard error of prediction of 
±4.09 mD, assuming a normal distribution of prediction results). 
Because of that, the rsq was used as the most intuitive metric.

One of the advantages of the tidymodels approach is that 
it is cohesive with the tidyverse framework – a collection of 
packages for data manipulation and visualization. It is therefore 
easy to combine the modeling results and visualize them in 
a meaningful way. Figure 6 presents a direct comparison of 
true and predicted permeabilities. This figure can also be used 
to evaluate the models’ accuracy and spot any outliers: the 
closer observations are to the 1:1 line, the better the accuracy 
and the higher the rsq.

Overall, the RF performed with greater predictive accuracy 
than MLR (Tab. 2, Fig. 6). However, MLP seems to better 
predict the permeability values for those samples with an 

Table 2. Main metrics from modeling results on the training dataset
Tabela 2. Metryki dla wyników modelowania na zbiorze trenin-
gowym

Model Metric Estimate

MLR RMSE 1.61
RF RMSE 1.47

MLR MAE 1.15
RF MAE 1.01

MLR Rsq 0.800
RF Rsq 0.834

Fig. 6. Model performance on the training set. Green 
dots represent points for which the residual was 
greater than 3; labeled samples had a residual greater 
than 5. The dashed line represents the 1:1 line
Fig. 6. Wyniki modelowania na zbiorze treningo-
wym. Zielone punkty reprezentują obserwacje dla 
których residua były większe niż 3. Etykiety repre-
zentują obserwacje, dla których residua były większe 
niż 5. Przerywana linia reprezentuje linię 1:1
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extremely tight structure (k_conf < 0.0001 mD). The reason 
for that may lie in the linear nature of the regression problem, 
for which RF could not maintain linearity with the continu-
ous transition, as MLR could. This issue was well described 
in the work of Ao et al. (2019), where the authors applied 
a linear RF algorithm to study logging regression modeling 
in unconventional shale reservoirs. Unfortunately, linear RF 
has not yet been introduced in tidymodels. 

The resulting RMSE from MLR and RF models are com-
parable to the one reported by Byrnes et al. (2009). The re-
searchers (2009) used simple linear regression (LR), MLR, and 
artificial neural networks (ANN) to predict permeability for 
tight sand formations. Byrnes et al. (2009) reported a standard 
error of 4.5 mD, 4.1 mD, and 3.3 mD for LR, MLR, and ANN, 
respectively. Their results are comparable to those obtained in 
this study, although models were based on slightly different 
data quality assumptions (a different number of observations 
and variables). While Byrnes et al. (2009) used calculated 
in-situ porosity to predict permeability, ambient porosity was 
used in this study. 

Model interpretation

One way to interpret a model is to perform feature (variable) 
importance (vip package) as a part of the global interpretation 
(James et al., 2013; Boehmke and Greenwel, 2020). This opera-
tion can determine which variables are the most influential to 
the model. In the case of linear regression models, the feature 
importance is strictly based on t-statistic. Variables with the 
most predictive power have the highest t-statistic and the 
lowest p-value. 

In RF, the variable importance is based on the average 
total reduction of loss for selected features across all trees and 

Fig. 7. Variable importance for MLR and 
RF. The VIP for MLR is directly related to 
the p-value (p < 0.05). The VIP for RF uses 
permutation-based importance measure loss
Rys. 7. Istotność zmiennych dla MLR i RF. 
VIP dla MLR jest bezpośrednio związana  
z p-watością (p < 0.05). VIP dla RF bazuje 
na funkcji straty

the permutation-based importance measure (Molnar, 2019; 
Boehmke and Greenwel, 2020). In this approach, the increase 
of prediction error (accuracy) is checked after the variable set is 
randomly shuffled (one variable at a time). The most important 
variables are those for which the largest decrease in accuracy 
is observed after permutation. 

The variable importance analysis revealed that the most 
influential feature was common for both models (Fig. 7). 
Porosity was expected to be at the top of feature importance 
since this parameter controls permeability in many sedimen-
tary basins, both conventional and unconventional reservoirs 
(Pape et al., 1999; Clarkson et al., 2012). For MLR, adding 
other variables only slightly improves the model. The situation 
is somewhat different for RF, for which the depth variable 
seems to influence the permeability predictions (Fig. 7). The 
RF algorithm considers the interactions between the variables 
and nonlinear relationships, which can improve model ac-
curacy (finding hidden relationships in the data). The MLR, 
on the other hand, assumed that all relationships are linear 
and that there is no interaction between the variables.

Interestingly, the top three variables for RF (most influen-
tial to the model) consist of basic information that could be 
obtained from wireline logging tools (porosity, basic lithol-
ogy, and depth). Using these three variables in permeability 
prediction will still provide high accuracy when RF is used. 
The most important information from decrypted rock type 
in the RF model is lithology. Sedimentary structures and the 
pore-filling/cementation variables have only a slight impact 
on the model’s performance. The same can be stated for the 
variables of basin and formation name. This allows assuming 
that a simple model with only three variables could be suc-
cessfully used in other tight sandstone formations of Rocky 
Mountain basins, which is consistent with conclusions reported 
by Byrnes et al. (2009).
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Neither model could correctly predict the permeability for 
samples with rock types 12220, 13256, 13266, 15276, 15595, or 
16596 (Fig. 6). For those samples, the residual was greater than 5. 
Based on rock typing (Byrnes et al., 2009), these are as follows:
• 12220 – siltstones or very shaly sandstones (40–65% clay 

or silt), well-indurated, moderate-low porosity (3–10%), 
unfractured, convolute, slumped, large borrow mottled 
bedding, and with sulfide pore filling;

• 13256 – moderately shaly sandstones (10–40% clay or 
silt), well-indurated, moderate-low porosity (3–10%), un-
fractured, quartz pore filling with different sedimentary 
structures;

• 13256 – flaser bedded, discontinuous mud layers;
• 13266 – sandstone, small-scale (< 4 cm) x-laminated, ripple 

x-lam with a small-scale hummockey crossbed;
• 15276 – sandstone, medium-grain, well-indurated, moder-

ate-low porosity (3–10%), unfractured, large scale (> 4 cm) 
trough or planar crossbed, quartz pore filling;

• 15595 – sandstone, medium-grain, indurated, mod-high 
porosity (> 10%), unfractured, flaser bedded, discontinuous 
mud layers, calcite pore filling;

• 16596 – sandstone, coarse-grain, indurated, mod-high po-
rosity (> 10%), unfractured, flaser bedded, discontinuous 
mud layers, quartz pore filling.
For 12220, 15595, and 16596, there were not enough 

samples to train the model, which could have resulted in poor 
prediction. The RF prediction for samples of rock type 15276 
is overestimated for one sample and underestimated for another 
one. Overall, there were only two out of 34 samples reported 
with such a high mismatch. The RF prediction for the sample 
of rock type 13256 is underestimated (one sample out of 17).

In addition, MLR could not predict samples with the rock 
types 11219, 13217, 13286, 14286, or 15277. It is difficult to 
identify a common feature of all the samples for which the 
models failed. Most of these outliers have a third digit equal to 
two, which is linked to a well-indurated, moderate-low-porosity 
(3–10%), unfractured sample. However, they have different 
sedimentary structures and different pore-filling material. 

Model validation

The final step of modeling is to check the models’ perfor-
mance on the testing set (Kuhn and Silge, 2020).

The training and testing set metrics are comparable (com-
pare Tab. 2 to Tab. 3), which means that the models do not 
overfit. As with the training set, several outliers (residual > 3) 
were not explained by the models (Fig. 8). The features shared 
by these outliers are number two on the third position and six 
and seven on the fifth position from rock type, which refers 

to a well-indurated, moderate-low-porosity (3–10%), unfrac-
tured sample (as in the training set), but with calcite or quartz 
cementation. 

The rsq results obtained from the MLR and RF models were 
compared to those from the basic linear regression model (LR), 
which used only one variable to predict permeability, yet with 
the highest importance (k_conf ~ porosity). This comparison 
served as an indicator of how adding another variable im-
proves the permeability prediction. The rsq for simple LR, 
performed on the testing set, shows a high initial correlation 
of 0.772 (Fig. 9, Tab. 3). The performance of MLR is about 
3% better, and RF about 6% better, than that of LR (Tab. 3). 
However, MLF and RF are complex models that might be hard 
to implement in real life. Reducing the number of variables 
to three (porosity, basic lithology, and depth) would blur the 
line between LR and MLR (rsq of 0.77 vs. 0.78) and would 
lower the RF performance by about 3% (rsq: 0.80), while still 
leaving the RF as the best model. If more complex models are 
preferred or acceptable, RF seems to be a better choice for both 
the full set of variables and the reduced one.

Table 3. Main metrics from modeling results on the testing dataset
Tabela 3. Metryki dla wyników modelowania na zbiorze testowym

Model Metric Estimate

MLR RMSE 1.59
RF RMSE 1.48

LR (references) RMSE 1.71
MLR MAE 1.11
RF MAE 0.99

LR (references) MAE 1.25
MLR Rsq 0.802
RF Rsq 0.831

LR (references) Rsq 0.772

Conclusions and recommendations for future study

This study demonstrates the application of a machine learn-
ing approach to predict permeability under confining stress 
conditions for tight sandstone formations using MLR and 
RF algorithms. The modeling results from both training and 
testing sets were evaluated using standard metrics and related 
to those presented by Byrnes et al. (2009). The RF showed 
slightly better performance on both the training and testing 
sets, with an rsq of ~0.83 compared to MLR’s rsq of ~0.80. 
The results were also related to simple LR (reference model) 
with only one variable – porosity. The RF showed about 6% 
improvement over the LR when evaluated on the testing set.

The porosity of the MLR and RF models was the most in-
fluential variable to the models’ performance, based on feature  
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importance analysis. In RF, the depth variable had a high 
score that could be evidence of hidden interactions between 
the variables of porosity, permeability, and depth. 

An attempt was made to explain the outliers – observations 
that were poorly predicted by the models (local interpretation). 
Based on the rock type characteristics provided by Byrnes et al. 
(2009), the common feature of outliers for both training and 
testing sets was moderate-low porosity (3–10%) and a lack of 
fractures. Also, in the testing set, calcite or quartz cementation 
was characteristic of outliers.
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