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Optimization algorithm for number and wells placement

Algorytm optymalizacji liczby i położenia odwiertów

Piotr Łętkowski

Oil and Gas Institute – National Research Institute

ABSTRACT: Determination of the optimal number and placement of production wells is crucial for the effective depletion of the hy-
drocarbon reservoir. Due to the strongly non-linearity of the problem and the occurrence of multiple local minimums in the response 
function the non-gradient optimization methods in combination with reservoir simulations are most commonly used for its solution. 
However, it should be noted that most of the research works dedicated to this issue describe the process of placement optimization but not 
the number of drilling wells assuming that it was arbitrary set. This is partly due to the fact that known and used optimization methods 
operate on a fixed number of optimization parameters, therefore the number of production wells can not change during the optimization 
process. The paper is dedicated to the attempt to build an algorithm that allows simultaneous optimization of the number and position 
of production wells with respect to the discounted profit in a given period of operation. The basic optimization method in the presented 
algorithm is the Particle Swarm Optimization (PSO) – one of the most effective non-gradient optimization methods that belongs to 
the group of methods applying the swarm’s intelligence. Taking into account the number of drilling wells in the optimization process 
means that the algorithm operates on a variable number of parameters. The objective algorithm starts optimization from an arbitrarily 
set number of producers, reducing it gradually. Efficiency tests conducted on the sample reservoir PUNQ-S3 indicated a satisfactory 
convergence of the proposed method. The computing program created implements the mechanisms of convergence enhancement by 
improving the boundary conditions for the optimization method. The minimum separation distance control between production wells 
was also introduced at the initial stage of optimization process. Although the algorithm is characterized by satisfactory convergence it 
would be advisable to improve it by using a hybrid method to increase its effectiveness in the local optimization phase and to introduce 
minimum well spacing during the entire optimization process.

Key words: optimization, reservoir simulation, swarm intelligence, particle swarm optimization, optimal number of wells, optimal 
well placement.

STRESZCZENIE: Określenie optymalnej liczby i położenia odwiertów eksploatacyjnych jest kluczowe dla efektywnej eksploatacji 
złoża węglowodorowego. Ze względu na silnie nieliniowy charakter problemu oraz występowanie w funkcji odpowiedzi wielokrot-
nych minimów lokalnych do jego rozwiązania najczęściej wykorzystywane są bezgradientowe metody optymalizacyjne w połączeniu 
z symulacjami złożowymi. Należy jednak zauważyć, że większość prac poświęconych temu zagadnieniu opisuje proces optymaliza-
cji położenia, a nie liczby odwiertów, przyjmując, że jest ona dana arbitralnie. Wynika to po części z faktu, że znane i stosowane me-
tody optymalizacyjne operują na stałej liczbie parametrów optymalizacyjnych, w związku z czym liczba odwiertów wydobywczych 
nie może zmieniać się w trakcie procesu optymalizacji. Artykuł jest poświęcony próbie zbudowania algorytmu umożliwiającego rów-
noczesną optymalizację liczby i położenia odwiertów wydobywczych ze względu na zdyskontowany zysk w zadanym okresie eksplo-
atacji. Podstawową metodą optymalizacyjną w prezentowanym algorytmie jest optymalizacja rojem cząstek (ang. PSO) – jedna z naj-
bardziej efektywnych metod optymalizacji bezgradientowej, należąca do grupy metod wykorzystujących inteligencję roju. Próby efek-
tywności metody przeprowadzone na przykładzie złoża testowego PUNQ-S3 wskazały na zadowalającą zbieżność zaproponowanej 
metody, dla której na początkowym etapie zastosowano kontrolę minimalnej odległości pomiędzy odwiertami. Jakkolwiek algorytm 
charakteryzuje się zadowalającą zbieżnością, to jednak wskazane byłoby jego udoskonalenie poprzez wykorzystanie metody hybrydo-
wej w celu zwiększenia jego efektywności w fazie optymalizacji lokalnej oraz wprowadzenie kontroli odległości minimalnej w trak-
cie całego procesu optymalizacji.

Słowa kluczowe: optymalizacja, symulacje złożowe, inteligencja roju, optymalizacja rojem cząstek, optymalna liczba odwiertów, opty-
malne położenie odwiertów.
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Introduction

Determining the optimal number and placement of the 
production wells is critical for the effective operation of the 
hydrocarbon reservoir. The complex problem of optimal field 
development pattern is additionally complicated by the fact 
that hydrocarbon reservoir is characterized by in-homogeneous 
distributions of unknown or poorly recognized physical quanti-
ties which in combination with economic variables, reservoir 
fluid properties and well production controls determine the 
strongly non-linear nature of the issue. 

An important help in the field development strategy are 
reservoir simulation numerical models that integrate all types 
of information describing the hydrocarbon reservoir. Although 
building a reliable simulation model is a difficult and time-con-
suming task however such a model can be successfully used to 
test various scenarios of reservoir performance. In particular, after 
setting up of detailed assumptions regarding the well production 
controls, it can be used to optimize position of production wells.

Because the answer domain of the thus formulated optimiz-
ing matter has many local minimums, the problem is most often 
solved using non-gradient optimization methods and numerical 
simulations. Various approaches to solving optimal wells spacing 
issue and optimization are found in the literature. In particular, 
genetic algorithms are used (Yeten et al., 2003; Güyagüler and 
Horne, 2004; Emerick et al., 2009; Lyons and Nasrabadi, 2013; 
Humphries and Haynes, 2015; Sampaio et al., 2015a; 2015b;), 
particle swarm optimization (Onwunalu and Durlofsky, 2010; 
Qihong et al., 2012; Nwankwor et al., 2013; Isebor et al., 2014), 
differential evolution (Awotunde, 2014; Atashnezhad et al., 
2017), harmony search algorithm Afshari et al., 2011), the “im-
perialist competitive” algorithm (Naderi and Khamehchi, 2017), 
the bat-inspired algorithm (Keshavarz and Nader, 2016; Naderi, 
2017; Łętkowski, 2018), covariance matrix adaption evolutionary 
strategy (Bouzarkouna et al., 2012; Feng et al., 2016), analytic 
and semi-analytical methods (Hazlett and Babu, 2005), machine 
learning (Nwachukwu et al., 2018), generalized pattern search 
(Humphries, 2014), directional search (Aliyev, 2011).

Among the evolutionary strategies the genetic algorithm is 
most often used and particle swarm optimization characterized 
by very good convergence. For that reason it has been used 
to solve numerous of optimization problems. It has also been 
used in this work as the basic method of optimization.

It is worth noting however, that most of works dedicated 
to this issue describe the process of infill well placement op-
timization rather then the number of wells, assuming that it 
is set arbitrarily. This is partially due to the fact that known 
and used optimization methods operate on a fixed number of 
optimization parameters, therefore the number of production 
wells can not change during the optimization process. 

The subject of the presented work is an attempt to build 
an optimization algorithm for the selection of the number and 
placement of production wells with simultaneous optimiza-
tion of the mentioned parameters (Ilamah and Ebere, 2017; 
Onwunalu, 2014; Isebor et al., 2015). As a measure of opera-
tional efficiency the NPV (net present value) was taken under 
consideration based on the analysis of discounted cash flows 
at a given rate of return.

The problem formulated in this way is an example of global 
optimization in the space of permitted locations and number 
of production wells.

Problem identification

The aim of the work was accomplished on the example of 
the following optimization problem: We are looking for such 
a number of vertical wells and their locations that for the given 
production well controls scheme the net present value (NPV) 
reach the maximum value with minimum number of produc-
tion wells whilst the process of selecting of production wells 
number and their placements should proceed simultaneously.

Optimization of the engineered algorithm was carried out 
for a three-phase (oil, water, gas) PUNQ-S3 reservoir model 
(Barker et al., 2001; Floris et al., 2001). The simulation model 
of the PUNQ-S3 resevoir has been made available by Elf for 
testing purposes and is available on an Open Source basis. The 
model consists of 2660 blocks (mesh block 19 × 28 × 5) of 
which 1761 blocks are active. This heterogeneous simulation 
model is described by the following petrophysical properties: 
(1) average porosity – 14.3%, (2) average horizontal permeabil-
ity – 278.8 mD, (3) average vertical permeability – 130.6 mD. 
The model includes a fault and two Carter-Tracy type active 
aquifers. The optimization process was carried out for the 
cumulative crude oil production in the field operated with 
a variable number of production wells over a period of 20 years. 

There was Schlumberger’s Blackoil Eclipse reservoir simu-
lator used.

Optimization algorithm

Particle Swarm Optimization
In particle swarm optimizing the solutions so called “par-

ticles” work together in order to find the optimal solution. During 
the optimization process each particle while changing its position 
in the solution space marking up a velocity vector. This vector 
is modified using information about the search history for both 
a given particle and the remaining particles of the swarm.
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This way the searched solution space can be described 
using the following formulas:

position:                                          (1)

velocity:       (2)

The position of the particle in the multidimensional space 
is modified in each iteration cycle according to the formula 
(1) through the velocity vector, (2). The velocity vector of the 
iteration step is a function of the previous value of the velocity 
vector, its position, the best solution found by the particle and 
the best global solution. 
The remaining values appearing in formula (2) are defined below:
ω – constant or variable coefficient of inertia,
r1, r2 – random numbers from the range (0,1),
c1, c2 – scaling parameters (variable or constant),
pi

t, pg
t – respectively best i-th particle solution and best global 

solution.
The parameter ω, called the inertia coefficient determines 

the effect of particle velocity in the previous iteration step on its 
current position. It is important for the algorithm convergence 
and in most applications occurs in the form dependent on the 
iteration number, e.g.:

�� � ���� + ����� − ����� × �1 − �
����

�  (3)

where:
ωmax, ωmin – maximum and minimum value of parameter,
k, kmax – iteration and assumed number of iterations. 
Values depend on the issue solving once usually assumed: 

ωmax ∈ (0.9,1.1)
ωmin ∈ (0.1,0.5)

According to the formulas listed above each swarm particle 
searches the space of solutions, modifying future location based 
on its current location, the best solution found so far and using 
the information on the best solution in the swarm of solutions. 
Scaling factors, c1, c2 allow to control the influence of velocity 
vector individual members on the solution. If the particle only 
uses information about the best swarm solution, c1 = 0. For the 
particle that is self-looking for a solution but not taking into 
account the solutions found by other particles, c2 = 0. Typically, 
coefficients take constant values are assumed. The post above 
the Particles Swarm Optimization is its classic form.

Optimization variables representation
The number and coordinates of production wells are the 

optimization variables for the analyzed problem. These co-
ordinates are represented by dimensionless variables in the 
numerical model according to the following formulas:

x = int(ax ξ + bx + 0.5)

y = int(ay ξ + by + 0.5)

where: x, y are production well coordinates in simulation 
model grid system, whereas ξ, η are dimensionless coordinates 
respectively taking values from the range (–1.0, 1.0).
Factors ax, bx, ay, by been defined as follows:

�� =
���� � ����

2  

�� =
���� � ����

2  

�� =
���� � ����

2  

�� =
���� � ����

2  

Where Xmin = 1, Xmax = 19, Ymin = 1, Ymax = 28 are simulation 
model grid numbering ranges.

The optimization process is conducted using dimensionless 
variables and conversion into real variables is performed in 
the process of generating simulator batch file.

A third variable was introduced to define the presence of 
the well. Depending on its value, the well is or is not included 
in the batch file generation process for the simulator.

Optimization procedure

In order to solve the set optimization problem, a numerical 
program implementing a modified Particle Swarm Optimization 
was deployed. 
The details of applied solution are presented below:
1. Reading program operation parameters (wells control pa-

rameters, optimization method parameters, optimization 
parameters of the model, their variability ranges and defini-
tions of controls size). 

2. The drawing of solutions (group of models) for different 
combinations of production wells location and a given 
number of boreholes.

3. The objective function value determination for each of the 
particle swarm’s model solutions. The NPV as objective 
function has been used:

 

where:
T – number of production years,
Qoi – cumulative crude oil production in i-year of production,
Po – the crude oil price for 1 cu.m.,
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Qwi  – cumulative formation water production in i-year of 
production,

Pw – the formation water disposal cost for 1 cu.m.,
OPEX, CAPEX – operational expenses and investments 

respectively, 
D – discount rate.
4. Update of local and global solutions. Due to the way the 

optimization problem was formulated, the basic optimiza-
tion method was modified as follows:
a) the best particle solution is updated when the following 

conditions are met
NPVi > NPV i

best

npvi > npv ibest

b) similarly the best global solution is updated when the 
following condition is met

NPV i
best > NPVbest

global

npv ibest > npvbest
global

where:
NPVi, NPV i

best, NPVbest
global – value of objective function re-

spectively for i-th particle, i-th particle best solution 
and best global solution,

npvi, npv ibest , npvbest
global  – the above values per the appropriate 

number of wells.
5. Modification for each particles with the following modifica-

tion in formula (2).

�� = 2.5 − 2.0 �
����

 

�� = 0.5 − 2.0 �
����

 

To avoid premature convergence, a mutation technique was 
used as follows: A random number is generated for each well. 
Depending on its value, the well position is mutated by one 
model block in a random direction (see Fig. 1).
6. Return to point 3.

The presented procedure is cycled until the stop condition 
is met, eg. achieving a certain number of iterations performed 
and/or achieving the assumed match between the average 
matching value in the swarm and the best match.

The algorithm was build in the way to exclude the user 
participation need from the optimization process. Therefore, 
the program has been equipped with analyzing modules for 
copying, moving and modifying batch files containing data and 
simulation results. After performing the necessary operations 
software application launches the reservoir simulator and after 
completing simulation it analyzes the obtained results. 

An optimization example for number and production 
wells locations

Optimization algorithm parameters
The presented version of Particle Swarm Optimization 

method requires the several parameters assumptions. In par-
ticular, the number of swarm particles, N = 20 and the initial 
number of wellbores, Nwinit = 30 were assumed.

In addition, the coefficient of inertia limits were established 
(see formula (3)),

ωmin = 0.4     ωmax = 0.9

The proposed method also requires the assumption of swarm 
particles maximum movement velocity:

v imax = 0.15

Assuming NPV as an optimization criterion the following 
were defined in addition:
Po = $ 629 (the crude oil price for 1 cu.m.),
Pw = $ 32 (the formation water disposal cost for 1 cu.m.),
OPEXwell = 5 mln $ (the annual operation cost per production 
well),
CAPEXwell = 70 mln $ (the total investment cost per well),
D = 0.1 (discount rate).

Independently, production well operation controls were 
defined and presented below:
• maximum well production rate,  �������� = 400��

�  

• maximum gas/oil ratio, WGORMAX = 300 [–],

• economic oil production rate per well,  ������� = 30��

�  

• well production rate was controlled maintaining constant, 
WBHP = 150 bars, 

• exploitation time, Texp = 30 years.
An additional mechanism was also introduced enabling 

well shut-in in case water/oil ratio or gas/oil ratio were 
exceeded.Fig. 1. Mutation principle adopted

Rys. 1. Zastosowany operator mutacji
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The algorithm has placed the wells in the oil zone of the 
reservoir what is the solution consistent with the practice of 
reservoir engineering. This wells placement results from the 
imposed condition of the maximum gas/oil ratio on the one 
hand, and from the consideration of the cost of water utiliza-
tion in the objective function.

Summary

The purpose of the work was an attempt to apply an au-
tomatic algorithm for determination of the number and loca-
tion of production wells placement in order to optimize oil 
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In order to verify the efficiency of the algorithm, a conver-
gence test was carried out for initial number of 30 production 
wells. In order to reduce the effect of randomness the opti-
mization process was repeated 10 times and the results were 
averaged. As a result, NPV = $ 1.264 billion was obtained for 
6 production wells. The results of the convergence test are 
shown in Fig. 1. The algorithm is characterized by a satisfac-
tory convergence meeting the end condition after 200 iterations 
(1000 simulations runs). Such a result should be considered 
very good taking into account the fact that 90 variables were 
optimized (30 production wells, having three coordinates each).

We observe a long period without improvement due to the 
difficulty in reducing the number of production wells while 
maximizing, what we can see on the Figures 3–4. Although in 
the initial optimization phase, both the number of wells, Nwell and 
the average profit per well, npvbest are significantly improved, 
followed by a long stagnation period of the algorithm.

Fig. 2. Algorithm convergence. Net present value, NPVbest

Rys. 2. Zbieżność algorytmu. Wartość bieżąca netto, NPVbest

Fig. 3. Algorithm convergence. Numbers of wells, Nwell for global 
best solution
Rys. 3. Zbieżność algorytmu. Liczba odwiertów, Nwell dla najlep-
szego rozwiązania 

Fig. 4. Algorithm convergence. Average NPVbest per well, npvbest 
for global best solution
Rys. 4. Zbieżność algorytmu. Średnia wartość bieżąca netto na od-
wiert, npvbest dla najlepszego rozwiązania
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Fig. 5. Optimal wells placement
Rys. 5. Optymalne rozmieszczenie 
odwiertów wydobywczych

A change in the assumptions of the original optimization 
method caused problems with the effectiveness (convergence) 
of the method. Despite this, the proposed algorithm resulted 
in an sevenfold increase of NPVbest over the initial value to the 
initial value and nearly a fourfold reduction of the number of 
wells, Nwell. This means an 26-fold increase of npvbest.
The Fig. 5 shows the optimal wells placement obtained.
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production in a given period of exploitation while the number 
and wells placement selection should proceed simultaneously. 
The problem was formulated as a conditional optimization by 
modifying the basic optimization method.
The scope of work included:
• optimization methods choice for the need of identified 

optimization problem;
• building an effective algorithm that enables the optimiza-

tion process;
• numerical implementation of the created algorithm;
• the algorithm’s operation simulation performance in order 

to find the optimal number and location of production wells 
for the selected sample formation.
As a result of the conducted simulations the possibility of 

using the selected heuristic technique to optimize the number 
and location of wells within assumed boundary conditions 
was confirmed.

Conducted simulation analysis allows to formulate the 
following conclusions and remarks:
• The basic optimization method selection turned out to be 

an significant problem. The first attempts carried out using 
genetic algorithms with variable chromosome length failed 
due to very poor algorithm convergence. Only the use of 
the Particles Swarm Optimization (PSO) allowed to obta-
in satisfactory algorithm efficiency. 

• The conducted tests indicate the need to algorithm ope-
rate on dimensionless quantities. Their use significantly 
improves algorithm convergence despite the fact that the 
optimization parameters assume discrete values (the wel-
lbores coordinates in the simulation model grid system).

• Some weakness of the stochastic sampling methods includes 
this particular optimization method is the need to determine 
the parameters of the algorithm that have significant impact 
on its convergence. The coefficient of inertia is particu-
larly important, which was assumed as a linear function 
decreasing along with the iteration number increase. Also 
the remaining coefficient of the formula (2) has been ad-
dicted to number of iteration.

• It is noticed the lack of efficiency of the created algorithm 
in the local optimization stage. This is manifested by the 
algorithm’s disability to improve the result after the initial 
and significant value increase. This is a feature of the base 
optimization method assumed, unfortunately. In the case 
of continuation the presented subject it would be advisable 
to improve the existing algorithm with an effective local 
optimization mechanism activated in the case of a longer 
lack of improvement in the result.

This paper was written on the basis of the statutory work en-
titled: Optimization algorithm for a variable number of param-
eters on the example of selection of the number and position of 

production wells - the work of Oil and Gas Institute – National 
Research Institute was commissioned by the Ministry of Science 
and Higher Education; order number: 0022/KZ/2018, archive 
number: DK-4100-0022/2018.
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OFERTA BADAWCZA ZAKŁADU
SYMULACJI ZŁÓŻ WĘGLOWODORÓW I PMG

•	 sporządzanie	 ilościowych	 charakterystyk	 złóż	 naftowych	 (konstruowanie	 statycznych	
modeli	złożowych);

•	 analizy	 geostatystyczne	 dla	 potrzeb	 projektowania	 modeli	 złóż	 naftowych,	 w	 tym	 PMG	
i	wielofazowych	obliczeń	wolumetrycznych;

•	 konstruowanie	dynamicznych	symulacyjnych	modeli	złóż	i	ich	kalibracja;
•	 wszechstronne	badania	symulacyjne	dla	potrzeb:	

	» 	weryfikacji	zasobów	płynów	złożowych,
	» 	metod	wspomagania	wydobycia	(zatłaczanie	gazu	lub	wody,	procesy	WAG,	procesy	wy-

pierania	mieszającego,	oddziaływanie	chemiczne),
	» 	optymalizacji	rozwiercania	i	udostępniania	złóż,
	» 	prognozowania	 złożowych	 i	 hydraulicznych	 (w	 tym	 termalnych)	 charakterystyk	 od-

wiertów	(w	szczególności	poziomych)	dla	celów	optymalnego	ich	projektowania,
 »  sekwestracji CO2;

•	 projektowanie,	realizacja	i	wdrażanie	systemów	baz	danych	dla	potrzeb	górnictwa	naftowego.
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