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Factor analysis of measurement data using the 
example of physicochemical well data for shale 
formations

The paper presents the use of statistical factor analysis for the reduction of the number of physicochemical measurement 
variables, based on the example of well data from shale formations. The main objective of the conducted analyses 
was the reduction of the number of measurement variables in a manner which would enable the preservation of the 
possibly high amount of information about the variability of the original data. The presented procedure consists of 
two main stages: 1) the elimination of correlated variables, 2) the actual factor analysis. The method turned out to 
be effective and it can constitute a basis for further analyses, e.g. an agglomeration analysis.
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Analiza czynnikowa danych pomiarowych na przykładzie danych fizykochemicznych 
odwiertów formacji łupkowych
W artykule przedstawiono zastosowanie statystycznej analizy czynnikowej do redukcji liczby fizykochemicznych 
zmiennych pomiarowych na przykładzie danych z odwiertów w formacjach łupkowych. Celem przeprowadzonych 
analiz była redukcja liczby zmiennych pomiarowych w sposób umożliwiający zachowanie możliwie dużej ilości 
informacji na temat zmienności pierwotnych danych. Przedstawiona procedura składa się z dwóch podstawowych 
etapów: 1) eliminacja zmiennych skorelowanych, 2) właściwa analiza czynnikowa. Metoda okazała się być efek-
tywna i może stanowić podstawę dla dalszych analiz, np. analizy aglomeracyjnej.

Słowa kluczowe: formacje łupkowe, pomiary fizykochemiczne, analiza czynnikowa.

Depending on the degree of the identification of a reservoir 
we may deal with several to over a dozen measurement values 
(measurement variables) characterising the petrophysical, 
geochemical, lithological or mechanical properties in each 
well in the reservoir. As the measurements progress, for each 
well we get a set of measurement variables of various types 
(measured in different units), which are not only correlated 
with each other to a varying extent, but also contain a very 
high number of cases, meaning the individual measurements 
taken along the depth of the well. The high number of vari-

ables and the amount of individual measurements are the 
cause of redundancy, resulting in difficulties associated with 
their interpretation, and make the detection of the internal 
structure of the data more difficult.

Limiting the number of measurement variables would 
allow their more effective analysis and the determination of 
the characteristic values for each well. These values would 
constitute a basis for the assessment of the similarity of 
data originating from various wells. To this end, the use of 
basic statistical values such as the mean value or variance is 
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highly insufficient, since it does not take into account their 
variability, or does so to a minor extent. On the other hand, 
the reduction of the number of measurement variables must 
be connected to the loss of information, which is disadvanta-
geous for obvious reasons.

The purpose of using the analysis presented in the paper 
is to limit the amount of measurement data characterising 
a well by eliminating the correlated values and replacing the 
remaining measurement variables with a smaller number of 
replacement variables, at the same time providing the control 
of the amount of lost information. The resulting replace-
ment variables may be used, e.g., to determine the features 
of similarity between the wells. Searching for groups of 
similar wells has, e.g., significance in reservoir simulations, 
where the possibility to define a structure of the alternating 
layers of a simulation model allows the determination of 
the possible directions of the flow of reservoir fluids. An-
other possible application is the use of similarity features to 
predict the extraction from wells providing access to shale 
formations, in a situation of the lack of production test data. 
A statistical analysis involving the search for similar data 
clusters in measurement sets for shale rocks for the purpose 
of their segmentation is presented in [2]. Another example 
of the use of statistical methods for the categorisation of 
measurement data is [3]. A direct inspiration to conduct the 
following analysis was the desire to construct a method of 
the identification of similar wells in order to implement it 
in a computer system for collecting and exchanging data 
for shale rocks [1]. The analysis presented in the paper 
constitutes a first stage of such a method of identification.

The reduction of the number of variables should proceed 
in two stages. The first stage is the so-called “screening” of 
data, involving the rejection of implausible or incomplete 
measurement variables, which if taken into account in fur-
ther analysis could cause the distortions of the results. The 
second stage involves replacing the original measurement 
variables with a smaller number of new, representative and 
mutually uncorrelated variables which, however, contain 

the fullest possible information about the relations between 
the original measurement variables. In this manner, for each 
well we get several representative measurement variables 
containing the majority of information about the properties 
which we are interested in and which could constitute a basis 
for further analysis.

The method suggested for the reduction of the number 
of variables is based on one of the statistical techniques of 
data analysis – the factor analysis. The statistical methods 
of data analysis are commonly used when analysing the cor-
relation and structure of mutually dependent datasets. The 
following elements may be distinguished in the procedure 
of factor analysis:
• data “screening”,
• the elimination of correlated variables,
• the principal component analysis.

The paper is dedicated to the use of factor analysis for the 
examination of the correlation and the internal structure of 
data based on the example of the available geochemical data 
from wells in shale formations. The analysis will involve the 
data from the ten following wells: L-1, L-2H, O-2, O-3, K-1, 
G-1, T-1, W-1, Z-1, B-1, with the analysis taking into account 
the following geochemical measurement values:
TOC – total organic carbon content [wt%],
Tmax – the temperature at which the maximum amount of hy-

drocarbons is created during cracking of kerogen [°C],
S1 – the amount of free hydrocarbons content present in 

a rock sample [mg HC/g of rock],
S2 – the amount of hydrocarbons released during the original 

cracking of kerogen [mg HC/g of rock],
S3 – the amount of carbon dioxide released during the de-

struction of organic substance [mg CO2/g of rock], 
PI – the so-called generation index,
PC – pyrolytic carbon content [wt%],
RC – residual carbon content [wt%], 
HI – hydrogen index [mg HC/g TOC],
OI – oxygen index [mg CO2/g TOC],
MINC – total mineral carbon content [wt%].

The analysis of principal components

The analysis of principal components involves searching 
for straight lines which are best adjusted to the clouds of mea-
surement points in a vector space (the space of measurement 
variables and measurements), in accordance with the least 
squares criterion. As a result, this enables the determination of 
the principal components (meaning the new variables known 
as factor variables) defining a vector subspace with a lower 
dimension, which reflects the original vector space. Although 
the first factor (factor variable) is separated in such a manner 

that it could explain the variance of original measurement 
variables to the greatest possible extent, virtually at no times 
does it recreate it in its entirety. Which is why this part of the 
variance which remains unexplained should be explained by 
the next (second) factor, etc. The number of factors separated 
in this manner does not inherently exceed the number of output 
variables. The purpose of the analysis is the reduction of the 
number of variables in such a way as to keep the largest possible 
part of the information about the structure of the original data.
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In the mathematical approach, determining the factor 
variables involves the symmetrical diagonalisation of the cor-
relation matrix. The obtained result is a new set of variables 
(factors), which constitute linear combinations of the original 
measurement variables, and are also mutually uncorrelated. In 
this manner, a smaller number of new variables is generated, 
nonetheless explaining the original variability of measurement 
data to the greatest possible extent.

If the number of principal components (factor variables) 
equals the number of original variables, then such a solution 
inherently recreates 100% of their variances. However, in this 
case the purpose for which the analysis is being conducted 
(meaning the reduction of the number of variables) is not 
achieved. It is therefore necessary to adopt a number of factor 
variables which is smaller than the number of original measure-
ment variables, at the expense of the variance being explained. 
The choice of the optimal number of factor variables remains 
an important problem. Two effective criteria for the selection 
of the number of principal components exist and are used:

The Kaiser criterion – according to this criterion one 
should take into account those principal components (factor 
variables) which have their eigenvalues higher than 1. The 
criterion may be interpreted in such a manner that if a fac-
tor variable does not take into account at least one original 
measurement variable, then it should be rejected.

The Cattel criterion (the so-called scree test) – the 
criterion recommends finding such a point on the plot of 

eigenvalues, to the right of which a gentle drop in the ei-
genvalues values takes place. This criterion usually results 
in a higher number of factor variables compared to the 
Kaiser criterion.

It is also possible to adopt the percentage criterion. This 
means that we leave as many factor variables as necessary 
to explain the arbitrarily selected percentage of the variances 
of original variables.

Regardless of the criterion adopted for the selection of 
the number of principal components, it is not uncommon to 
obtain a relatively high number of factor variables as a re-
sult of conducting a factor analysis and adopting one of the 
above-mentioned criteria. This usually happens when a too 
high number of measurement variables constitutes a basis for 
the analysis. We can then divide the measurement variables 
into two groups: active variables and additional variables, 
and conduct the whole analysis in two stages. In the first 
stage we will conduct a full analysis for variables qualified 
to the group of active variables, and next we will determine 
the correlations between the resulting factor variables and 
additional variables. In the second stage we will repeat the 
analysis for active variables and those additional variables, 
for which correlation with the factor variables obtained in 
the first stage exceeded, e.g., 50%. This solution leads to the 
further reduction of the number of principal components, 
simultaneously taking into account (although in a limited 
scope) the full list of measurement variables.

The elimination of correlated variables

The first stage is the screening of input data, involving the 
selection of wells for which the same set of data is available, 
and the rejection of incomplete or uncertain data (cases). 
Subsequently, due to the high number of variables constitut-
ing the measurement results, it is necessary to eliminate the 
dependent measurements. The measure of the dependence 
between the individual measurements for each well will be 
the Pearson correlation coefficient. The correlation matrices 
of measurement variables for three selected wells: L-1, O-3 
and W-1 are presented below.

In order to eliminate the dependent variables, TOC was ad-
opted as the reference variable, and subsequently those variables 
for which the coefficient of correlation with TOC was higher 
than 0.8 were removed from further analysis. Those variables 
are marked red in Tables 1, 2, 3. For most wells (L-1, L-2H, O-2, 
O-3, K-1, T-1, W-1) the adopted criterion caused the elimination 
of variables S1, S2, PC and RC from further analysis. For the 
G-1 and Z-1 wells the correlation allowed the removal of factor 
variables S2, PC and RC, while for the B-1 well no variable 
fulfilled the assumed condition of correlation (see Table 4).

Table 1. The matrix of correlation coefficients for measurement variables – the L-1 borehole

Variable Tmax S1 S2 S3 PI PC RC TOC HI OI MINC

Tmax 1.00 0.15 0.24 –0.31 –0.32 0.22 0.29 0.28 –0.16 –0.12 –0.40
S1 0.15 1.00 0.92 –0.16 0.22 0.95 0.86 0.89 0.46 –0.48 –0.23
S2 0.24 0.92 1.00 –0.18 0.00 0.98 0.96 0.97 0.44 –0.43 –0.24
S3 –0.31 –0.16 –0.18 1.00 –0.09 –0.16 –0.17 –0.17 –0.17 0.58 0.44
PI –0.32 0.22 0.00 –0.09 1.00 0.06 0.00 0.01 0.08 –0.48 0.03
PC 0.22 0.95 0.98 –0.16 0.06 1.00 0.94 0.96 0.44 –0.44 –0.23
RC 0.29 0.86 0.96 –0.17 0.00 0.94 1.00 1.00 0.25 –0.43 –0.26
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Table 2. The matrix of correlation coefficients for measurement variables – the O-2 borehole

Variable Tmax S1 S2 S3 PI PC RC TOC HI OI MINC

Tmax 1.00 0.51 0.51 –0.41 0.02 0.52 0.49 0.50 0.08 –0.62 –0.20
S1 0.51 1.00 0.91 –0.47 0.23 0.94 0.76 0.80 0.19 –0.52 –0.29
S2 0.51 0.91 1.00 –0.39 0.06 0.99 0.92 0.94 0.17 –0.49 –0.29
S3 –0.41 –0.47 –0.39 1.00 –0.55 –0.39 –0.37 –0.38 –0.01 0.68 0.15
PI 0.02 0.23 0.06 –0.55 1.00 0.09 0.02 0.03 –0.14 –0.28 0.29
PC 0.52 0.94 0.99 –0.39 0.09 1.00 0.89 0.92 0.17 –0.49 –0.30
RC 0.49 0.76 0.92 –0.37 0.02 0.89 1.00 1.00 –0.02 –0.47 –0.26

TOC 0.50 0.79 0.94 –0.38 0.03 0.92 1.00 1.00 0.01 –0.48 –0.27
HI 0.08 0.19 0.17 –0.01 –0.14 0.17 –0.02 0.01 1.00 –0.12 –0.21
OI –0.62 –0.52 –0.49 0.68 –0.28 –0.49 –0.47 –0.48 –0.12 1.00 0.31

MINC –0.20 –0.29 –0.29 0.15 0.29 –0.30 –0.26 –0.27 –0.21 0.31 1.00

Table 3. The matrix of correlation coefficients for measurement variables – the W-1 borehole

Variable Tmax S1 S2 S3 PI PC RC TOC HI OI MINC

Tmax 1.00 0.33 0.21 –0.24 0.03 0.21 0.35 0.34 –0.18 –0.41 –0.06
S1 0.33 1.00 0.89 –0.29 0.01 0.87 0.94 0.95 –0.10 –0.47 –0.22
S2 0.21 0.89 1.00 –0.03 –0.35 0.97 0.84 0.85 0.20 –0.18 –0.16
S3 –0.24 –0.29 –0.03 1.00 –0.47 0.09 –0.23 –0.22 0.31 0.67 0.28
PI 0.03 0.01 –0.35 –0.47 1.00 –0.34 –0.02 –0.04 –0.55 –0.48 –0.13
PC 0.21 0.87 0.97 0.09 –0.34 1.00 0.84 0.85 0.16 –0.14 –0.11
RC 0.35 0.94 0.84 –0.23 –0.02 0.84 1.00 1.00 –0.20 –0.47 –0.14

TOC 0.34 0.95 0.85 –0.22 –0.04 0.85 1.00 1.00 –0.19 –0.46 –0.14
HI –0.18 –0.10 0.20 0.31 –0.55 0.16 –0.20 –0.19 1.00 0.41 0.00
OI –0.41 –0.47 –0.18 0.67 –0.48 –0.14 –0.47 –0.46 0.41 1.00 0.34

MINC –0.06 –0.22 –0.16 0.28 –0.13 –0.11 –0.14 –0.14 0.00 0.34 1.00

Table 4. The matrix of correlation coefficients for measurement variables – the B-1 borehole

Variable Tmax S1 S2 S3 PI PC RC TOC HI OI MINC

Tmax 1.00 0.41 0.29 –0.42 0.40 0.30 0.40 0.15 –0.29 –0.63 –0.27
S1 0.41 1.00 0.95 –0.32 0.24 0.87 0.98 0.24 –0.12 –0.48 –0.20
S2 0.29 0.95 1.00 –0.26 0.01 0.89 0.95 0.21 0.07 –0.35 –0.18
S3 –0.42 –0.32 –0.26 1.00 –0.17 –0.21 –0.31 –0.07 0.20 0.64 0.53
PI 0.40 0.24 0.01 –0.17 1.00 –0.03 0.19 –0.12 –0.49 –0.38 0.03
PC 0.30 0.87 0.89 –0.21 –0.03 1.00 0.87 0.62 0.01 –0.37 –0.17
RC 0.40 0.98 0.95 –0.31 0.19 0.87 1.00 0.25 –0.16 –0.46 –0.19

TOC 0.15 0.24 0.21 –0.07 –0.12 0.62 0.25 1.00 –0.10 –0.21 –0.07
HI –0.29 –0.12 0.07 0.20 –0.49 0.01 –0.16 –0.10 1.00 0.28 –0.03
OI –0.63 –0.48 –0.35 0.64 –0.38 –0.37 –0.46 –0.21 0.28 1.00 0.44

MINC –0.27 –0.20 –0.18 0.53 0.03 –0.17 –0.19 –0.07 –0.03 0.44 1.00

Variable Tmax S1 S2 S3 PI PC RC TOC HI OI MINC

TOC 0.28 0.89 0.97 –0.17 0.01 0.96 1.00 1.00 0.29 –0.43 –0.25
HI –0.16 0.46 0.44 –0.17 0.08 0.44 0.25 0.29 1.00 –0.35 0.07
OI –0.12 –0.48 –0.43 0.58 –0.48 –0.44 –0.43 –0.43 –0.35 1.00 0.37

MINC –0.40 –0.23 –0.24 0.44 0.03 –0.23 –0.26 –0.25 0.07 0.37 1.00

ect. Table 1
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Because each measurement variable subject to the analysis 
is expressed in different units (and can therefore take values 
from a different range), before conducting the procedure of 
factor analysis it is necessary to standardise the data. The 
standardisation was performed in accordance with the fol-
lowing formula:

 

where:
xí – standardised measurement variable,
x – the average value of all the data for the given measure-

ment variable,
Sx – the standard deviation of all the data for the given me-

asurement variable.

As a result of standardisation, we get a space of measure-
ment variables in which the distance between the measure-
ments does not depend on the coordinates. By doing so we 
eliminate situations in which the given measurement variable 
has a greater impact on the result of the analysis, because it 
is expressed as higher absolute values.

The next stage is the replacement of variables remaining 
after the elimination of correlated data with the so-called 
factor variables, meaning uncorrelated vectors contain-
ing the highest possible amount of information about the 
variability of input vectors. An important problem here 
is the choice of the number of factor variables sufficient 
to credibly describe the variability of measurement data. 
Taking into account too small a number of variables may 
cause the loss of information about the variability of the 
analysed data; on the other hand, taking into account too 
high a number of them makes the sense of the whole analysis 
questionable. Table 5 presents a comparison of the number 
of factor variables obtained for each analysed well for both 
used criteria.

In most wells the numbers of factor variables for the Kai-
ser and Cattel criterions are in mutual compliance (the B-1, 
L-2H, K-1, O-2 and O-3 wells) or do not differ considerably 
(W-1, Z-1). The G-1 and T-1 wells, for which the difference 
in the number of variables depending on the adopted crite-
rion amounts to two, are the exception. The plot with the 
eigenvalues for these wells are presented in Figures 1 and 2.

In accordance with the Kaiser criterion, for both wells we 
get two factor variables (eigenvalues higher than 1.0), with 
four for the Cattel criterion, it being possible for the T-1 well 
to adopt even five factor variables depending on the method of 
the interpretation of the plot. A separate case is the L-1 well, 

Factor analysis

Table 5. The number of factor variables –  
the comparison of criteria

Borehole The Kaiser criterion The Cattel criterion

B-1 3 3
L-1 2/3 does not resolve

L-2H 2 2
G-1 2 4
K-1 2 2
O-2 2 2
O-3 2 2
T-1 2 4/5
W-1 2 3
Z-1 3 4

Fig. 1. Eigenvalues – the G-1 well

Fig. 2. Eigenvalues – the T-1 well

for which it is not possible to resolve the number of factor 
variables according to the Cattel criterion (Fig. 3). 

It seems that in this situation adopting the percentage crite-
rion would be the most effective, according to which we take 
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into account as many factor variables as possible to explain 
the arbitrarily selected percentage of the variance of original 
variables. Table 6 presents the percentage of variability taken 
into account by two, three and four factor variables and the 
eigenvalues obtained during the analysis.

Adopting the assumption that the same number of factor 
variables should be chosen for each well, it would be the most 
effective to choose three variables, which, on the one hand, 
means a considerable reduction of the number of original 
variables, and on the other hand, it causes the resulting fac-

ables should not be based on one of the criteria which are 
possible to be used, but on all the information acquired as 
a result of the analysis, i.e. the eigenvalues, the percent-
age of the explained variance of data, the monotonicity 
of the “scree test”.

• Due to the diversity of the properties of the rocks depend-
ing on the time and the mechanism of their generation, 
the result of a factor analysis may considerably depend 
on the selection of the stratigraphic unit for which the 
analysis is being conducted, which means the necessity 
to conduct it independently for each stratigraphic unit 
represented in the well.

• The values of factor variables for each well constitute 
a point of reference for further analyses, in particular for 
the use of agglomeration analysis for the purpose of cat-
egorisation, meaning the grouping of wells with respect 
to their statistical similarity. 

Table 6. The number of factor variables and the eigenvalues

Borehole Eigenvalues
The number of factor variables

2 3 4

B-1 4.63 / 2.04 / 1.04 66.73% 77.13% 86.97%

L-1 2.18 / 1.48 / 0.99 61.03% 77.69% 90.19%

L-2H 2.58 / 1.23 / 0.87 63.49% 78.05% 89.88%

G-1 3.02 / 2.18 / 0.95 74.22% 87.79% 93.11%

K-1 3.56 / 1.00 / 0.70 76.04% 87.75% 94.45%

O-2 2.54 / 1.20 / 0.85 62.25% 76.48% 87.85%

O-3 2.67 / 1.28 / 0.95 65.80% 81.57% 90.26%

T-1 2.61 / 1.74 / 0.97 72.60% 88.69% 95.85%

W-1 2.73 / 1.29 / 0.73 67.05% 79.14% 90.20%

Z-1 2.55 / 1.90 / 1.25 63.68% 81.56% 89.57%

Summary

The paper verifies the possibility of using factor analysis 
for the purpose of the credible reduction of the amount of 
measurement variables, based on the example of physico-
chemical data from the wells in shale formations. The con-
ducted statistical analysis indicated the effectiveness of the 
used method, and the results obtained during the analysis 
allow the formulation of the following conclusions:
• The factor analysis is a method of data analysis allowing the 

effective reduction of the number of measurement variables 
obtained during various kinds of research, and the physi-
cochemical data constitute a coherent set of information 
making it possible to conduct a complete statistical analysis.

• The conducted two-stage reduction of the number of mea-
surement variables allowed an over threefold reduction 
of their number of measurement variables while retaining 
over 75% of information about their variability.

• The procedure of determining the number of factor vari-

tor variables to take into account the majority of information 
included in the original data. Although for most wells the use 
of the Kaiser and Cattel criteria indicated taking into account 
two factor variables, the analysis of the variability of vectors 
taken under consideration (Tab. 6) decided about the selection 
of three variables. Ultimately, the conducted analysis allowed 
an over threefold reduction of the number of measurement 
variables, at the same time retaining over 75% of information 
about the variability of parameters for each well.

Fig. 3. Eigenvalues – the L-1 well
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