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Determination of Basic Reservoir Parameters in 
Shale Formations as a Solution of Inverse Problem 
in the Computer Assisted History Matching of 
their Simulation Models. Part I – Introduction to 
Methodology and Initial Tests

The problem of effective reservoir characterization of shale formations was addressed in the paper as the implemen-
tation of inverse problem applied to the history matching process of the formations simulation models. An advanced 
method of inverse problem solution was proposed based on the combination of stochastic and deterministic ap-
proaches. The method was than tested using simulation models generated for the case of a realistic shale formations 
discovered and tested in Poland.

Key words: shale formations, reservoir simulation models, inverse problem, optimization methods, particle swarm 
optimization.

Rozpoznanie istotnych parametrów formacji łupkowych poprzez rozwiązanie problemu 
odwrotnego metodą wspomaganej komputerowo kalibracji modeli symulacyjnych. 
Część 1 – wprowadzenie do metodyki i wstępne testy
W pracy podjęto zagadnienie charakterystyki formacji łupkowej pod kątem lepszego rozpoznania istotnych parametrów 
formacji. Zaproponowano podejście bazujące na komputerowo wspomaganej kalibracji modelu symulacyjnego 
takiej formacji, jako metodzie rozwiązania problemu odwrotnego. W metodzie tej zaimplementowano kombinację 
nowoczesnych technik optymalizacyjnych o charakterze stochastycznym i deterministycznym. Analizowana metoda 
została przedstawiona na uprzednio skonstruowanym, dynamicznym modelu wybranej formacji łupkowej.

Słowa kluczowe: struktury łupkowe, symulacyjne modele złożowe, problem odwrotny, metody optymalizacyjne, 
optymalizacja rojem cząstek.

The basic problem of construction and effective utilisa-
tion of reservoir simulation models for reservoir forecasting, 
is the issue of correct identification of reservoir parameters, 
including the parameters of producing wells [9]. Both in 
conventional and unconventional hydrocarbon reservoirs the 
direct measurements of these parameters are generally not 
sufficiently complete, or fully reliable, so that they can be di-
rectly used to construct reliable simulation models. Therefore,  

an indispensable element of the work with such models, is 
their calibration, being one of the most labour-intensive and 
complex stages of reservoir modelling.

The aforementioned problem is particularly important 
for unconventional reservoirs (including shale formations) 
due to the typically poorer identification of characteris-
tics of such reservoirs and in particular the characteristics 
of their completion. The problem of identifying reliable 
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parameters of the simulation model on the basis of ex-
ploitation data (well tests, initial production) in the model 
calibration process (history matching), is an example of 
the inverse problem [2], where based on the results of the 
model response (simulation results) and their comparison 
with measurement data (test data and/or production data), 
the correct parameterisation of the model is provided. Such 
a problem (as mentioned above) is generally ambiguous (i.e. 
ill-posed), even with the application of limits concerning the 
extent of parameter variability and their mutual correlation 
(including spatial correlation).

When expressed quantitatively the compliance of the 
model results with measurement data in the form of the 
objective function (being the measure of discrepancies), the 
ambiguity of the inverse problem is expressed by multiple 
local minima of this function and the solution of the problem 
is equivalent to finding the global minimum of the objective 
function. Due to the lack of universal methods for global 
minimisation of such a function, the solution of the above 
problem is most frequently reduced to “manual” tracing of 
function values and modification of model parameters by 

using engineering knowledge and experience of persons 
conducting the calibration process. 

In this paper, we propose a method for solving the inverse 
problem based on the “computer assisted history matching” 
(“computer-assisted calibration”) of the model with applica-
tion of a combination of modern stochastic and deterministic 
methods described in the following chapters of the paper. The 
proposed method to solve the inverse problem was tested 
initially on the so-called, “test functions” and then on the 
actual example of Polish shale formations drilled in and 
tested through a single vertical well-bore. For this purpose, 
a static model of the formation was constructed with typical 
parameters describing the flow dynamics and results of tests 
(test production) carried out in the aforementioned well bore.

At first this model was calibrated in a conventional man-
ner and then by using the proposed method. Both calibration 
processes and their accuracy and execution time have been 
compared, pointing to the advantages of applying the proposed 
method. The process of computer-assisted calibration of the 
simulation model, was carried out by means of in-house 
software, with the application of the Eclipse simulator [10].

Method of solution

The proposed method of solution of the presented in-
verse problem is based on four mathematical and numerical 
techniques creating a hybrid optimization method. Short 
characteristics of selected computational techniques are pre-
sented below.

Particle Swarm Optimization
In particle swarm optimization [1, 4–7] the candidate 

solutions (called particles) cooperate with each other to 
find the optimum solution. During the optimization process, 
each particle changes its position in the search space of 
solutions by determining the velocity vector. This vector 
is modified with the use of information, about the history 
of exploration, both of a given particle and the remaining 
particles of the swarm. 
The method can be described by the following formulas:

position: xi
t + 1 = xt

i + vi
t + 1 (1)

velocity: vi
t + 1 = ωvi

t + 1 + c1r1(pt
i – xt

i) + c2r2(pt
g – xt

i) (2)

In each iteration step (t) the position of a particle in the 
multidimensional space (xt

i) is modified in accordance with the 
formula (1) through the velocity vector vi

t + 1 (2). The velocity 
vector in step t + 1 is the function of the previous position of 
the particle (xt

i) and the velocity vector (vi
t + 1) which, in turn, 

depends on the best solution found by that particle (pt
i ) and 

the best solution found by all particles (pt
g ).

The remaining values appearing in formula (2) are: ω – fixed 
or a variable parameter of inertia, r1, r2 – random numbers 
from the range (0÷1), c1, c2 – scaling parameters (variable 
or fixed).

According to the above formulas, each particle of the 
swarm explores the search space of solutions by modify-
ing the position based on its best solution (pt

i ) and by using 
the information on the best solution in the swarm (pt

g ). The 
scaling factors c1, c2 allow to control the impact of individual 
elements of the velocity vector on the solution. If c1 = 0, the 
particle uses exclusively the information on the best solution 
of the swarm. For c2 = 0 the particle seeks solutions indepen-
dently, not taking into account the solutions obtained by other 
particles. It should be noted that a number of modifications 
of the particle swarm optimization can be found in specialist 
literature. However, the most commonly encountered form 
of it was described above.

Latin hypercube sampling
Sampling of the Latin cube [3] belongs to the group of 

techniques of experimental design and is one of the most 
effective methods of generating random samples, based on 
the probability density function. The idea of the method is 
based on the division of random space into separable sub-
spaces by dividing ranges of variation of each component, in 
the N-dimensional random space, into a specified number of 
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sub-intervals. Then a specific number of samples is generated  
in such a way as to obtain one sampling per sub-space con-
structed according to the principle of combinatorics in all 
dimensions of problem space. Sampling per sub-space of 
the random space are selected using the inverse cumulative 
distribution function of the probability distribution of single 
components of the random vector, where a different prob-
ability distribution can be applied on each component.

The Nelder-Mead method
The Nelder-Mead simplex method [8] belongs to a group 

of non-gradient optimization methods utilising (in the op-
timization process) exclusively the values of the objective 
function. The method is based on the notion of a simplex, 
which is a geometrical figure maintaining a set of N + 1 points 
in the N-dimensional space (a triangle is the simplex in the 
R2 space, a tetrahedron in the R3 space, etc.). In the explora-
tion of search space, the simplex utilises the values of the 
optimized function in three selected points: the best point, 
the worst point, the second worst point where it selects the 
direction, opposite to the direction of the greatest increase 
in the value of the function.

Lévy flight
The Lévy flight [11] must be understood as a stochastic 

Markov process, which involves searching the space of vari-
ables, where, after a sufficiently large number of steps, their 
lengths can be described by the Lévy stable distribution.  For 
numerical purposes, the Lévy distribution is usually defined 
through utilisation of the so-called, Mantegna’s algorithm 
based on a combination of two random variables with normal 
distribution with designated average values and standard de-
viation. In the constructed algorithm the change of position 
of a particle, called the “Lévy jump” is determined by using 
the following formula: 

 xi
t +1 = xt

i + 0.01 v(xt
i – pt

i)z                      (3)

where z is a random variable with normal probability dis-
tribution, v is a number generated by means of the Lévy 
distribution, pt

i
  is the best solution found by a given particle.

Hybrid algorithm
The prototype of the method for solving the inverse prob-

lem operates according to the following scheme:
1. Downloading the operating parameters of the program 

(observational data, control parameters, parameters of 
the optimization method, optimization parameters of the 
model, their ranges of variability and definitions of the 
values optimized).

2. Random selection by means of the Latin hypercube sam-
pling of the “swarm” of particles (i.e. solutions from which 
each is represented by the simulation model).

3. Selection of the best solutions for further optimization.
4. Initialisation of the main optimization loop.
5. Modification of solutions in accordance with the formula 

of the particle swarm optimization, taking into account 
the “Lévy jump”.

6. Determining the value of the objective functions for each 
of the “swarm” models.

7. Improving the best solution by the Nelder-Mead algorithm.
8. Checking the conditions for finishing the optimization. 

If the condition for finishing optimization has not been 
fulfilled – return to step 4.
The presented procedure is performed until the moment 

of reaching the condition for finishing the calculation, e.g. 
reaching the specific number of performed simulations (calcu-
lations of the objective function) or obtaining the set accuracy 
of restoring measurement data. The constructed algorithm 
was subjected to tests of convergence by the use of the De 
Jong tests. De Jong tests rely on examining the convergence 
of optimization algorithms on an example of the defined 
analytic functions with known extremes. 

Fig. 1 shows the results of the sample test of convergence 
for the Generalised Rosenbrock’s Function. The graph below 
depicts the value of the objective function (marked by OF) 
demonstrating discrepancy between the observational data 
and the result of optimization.

Fig. 1. Test of convergence on the example of Generalised 
Rosenbrock’s Function

The construction and verification of the dynamic model of Polish shale formations

For the purpose of further testing of the proposed method, 
a simulation model of real shale formation was constructed 

and verified. The area of the geological model (Fig. 2) has 
dimensions of about 12 × 11.5 km and average thickness 
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exceeding 800 m. The elaboration was limited to the model-
ling of production from one of the wells: W-1 which contains 
a complete set of exploitation data in the form of reports 
concerning cleanout operations and well bore measurements. 
Due to the fact that the full area of the geological model is 
characterised by a very large thickness, the model has been 
modified in the following manner:
• the thickness has been limited to F1 and F2 forma-

tions (Fig. 3) in which the highest value of TOC (Total  
Organic Carbon) occurred. The other layers were found 
to be inefficient and not participating in the exploitation 
of the structure,

fracture is modelled by giving its 
aperture and the number of blocks 
surrounding it with the logarithmic 
increase of their width.

Finally (after modifications and 
limitations of the grid) the static 
model is characterized by the fol-
lowing dimensions of the grid of 
blocks: 33 × 28 × 9 and the area of 
about 17 km2 (about 3.2 × 5.3 km). 
The static model was supplemented 
with the following elements: thermo-

dynamic model of the reservoir fluid and reservoir water, 
transport properties of reservoir fluid and reservoir water, the 
parameters of hydro-fracture and secondary fractures with 
the possible inclusion of fracture dynamics.

The reservoir-fluid model was constructed by means of 
the PVTSim program, in which the composition of the fluid 
was recombined on the basis of the stock tank liquid sample 
subjected to distillation, by the Engler Method, with gas com-
position (determined by way of the chromatographic test) of 
the gas obtained from the W-1 well bore. During the recombi-
nation process, this fluid was calibrated to the lowest gas/oil 
ratio which occurred during well production test. The obtained 

parameters of the reservoir-fluid model 
(recombined and calibrated) are the 
following: GOR = 169.7 Sm3/Sm3, 
ρo = 0.81 g/ cm3 (15°C), Psat = 210 bar, 
Tsat = 84°C, FVF = 1.54 @ Psat, Tsat.

Due to the lack of relevant data, 
the typical relative permeability curves 
have been applied concerning transport 
properties of reservoir fluids occur-
ring in this type of rocks. However, 
values of parameters describing these 
curves (in fractures or in a matrix) 
and the values of other parameters of 
hydro-fracture or secondary fractures 

Fig. 2. Demonstration of 3D view of the geological model of selected shale formation

Fig. 4. The new grid of model encompassing hydro-fracture

Fig. 3. Demonstration of 3D view of the geological model of analysed shale 
formation. The selected F1 and F2 formations. TOC content

• the area of the dynamic model has 
been limited to the area of W-1 
where the faults located in the vi-
cinity have been assumed as natural 
boundaries.
After determining the model area, 

the geometry of its grid was modified 
taking into account the hydrofracture 
of the aperture of 5 mm (Fig. 4). The 
proposed new grid of the model is the 
so-called, Tartan Grid in which the  
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were subjected to calibration, the results of which have been 
presented below. The calibration process also involved the 
permeability of the matrix due to erroneous measurements.

During calibration of the model, adjustments were made 
concerning static bottom-hole pressures (measured or cal-
culated from wellhead pressures) including cumulative 
fluid outflow. The period of operation of the W-1 well was 
divided into two stages, i.e. fluid removal with nitrogen and 
pumping and for that reason certain pressure measurement 
values might be poorly reliable. The quality of the “man-
ual” calibration of the model in the form of comparison of  

The test consisted in the application of the optimization 
algorithm, designed for the purpose of determining missing 
parameters of the simulation model (or not exactly determined 
parameters) and comparing the results with those obtained by 
way of  “manual” calibration. The following parameters of 
the model were set down: permeability of the matrix, perme-
ability of secondary fractures, permeability and porosity of 

simulation results with measurement data have been pre-
sented in Fig. 4–7.

The model after calibration depicts the production of oil 
and water (Fig. 6 and 8) and correctly reflects the course of 
static bottom-hole pressures (Fig. 5). However, cumulative 
gas production (Fig. 7) is presented in the weakest manner 
reflecting a discrepancy which increases over time. When the 
phase of fluid extrusion with nitrogen is finished, the discrep-
ancy is equal to several percent and at the end of simulation 
it reaches 20%. This may be caused by too low gas/oil ratio 
measured during the pumping phase.

Fig. 5. Calibration of the model. The W-1 well.  
Pressure at well bottom

Fig. 6. Calibration of the model. The W-1 well.  
Cumulative production of oil

Fig. 7. Calibration of the model. The W-1 well.  
Cumulative production of gas

Fig. 8. Calibration of the model. The W-1 well.  
Cumulative production of water

Test methods based on the actual shale formations method

hydraulic fractures, skin factor, coefficients of productivity 
and coefficient of fracture-matrix coupling (σ). In total, ten 
simulation model parameters were calibrated. Preliminary 
estimation of sought parameter values concerning their ac-
ceptable ranges was determined on the basis of available data.

In reference to the measure of quality of problem solv-
ing (the efficiency of solving the inverse problem), there 
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was compliance of measurement data with the results of 
simulation, for the assumed reference values, i.e. cumulative 
oil production, WOPT (Fig. 9), cumulative gas production, 
WGPT (Fig. 10), measurements of bottom-hole pressure, 
WBHP, during the well production test (Fig. 11).

The results presented do not differ significantly from the 
results obtained through calibration, by way of traditional 
methods. They indicate the effectiveness of the proposed 
method also in the case of real simulation model. However, 
the run-time of reaching the solution by the proposed method 
amounted to about ten hours, compared to the time of several 
days needed for manual calibration.

1.  The present paper has shown the proposal of a method using 
calibration solution of the inverse problem in the form of a 
hybrid optimization method, encompassing the following 
mathematical and numerical methods/techniques:
•	 Latin	Hypercube	Sampling – effective method of 

generating random samples from the probability density 
function for components in the multidimensional space,

•	 Particle	Swarm	Optimization – universal method of 
optimizing the functions of several variables belong-
ing to a group of multi-agent optimization methods,

• Simplex Method or Nelder-Mead	Method	– deter-
ministic optimization method for functions of several 
variables without the use of derivatives,

Fig. 9. Cumulative production of oil. Measurements  
vs. model results after calibration

Fig. 10. Cumulative production of gas. Measurements  
vs. model results after calibration

Fig. 11. Bottom-hole pressure. Measurements  
vs. model results after calibration

Summary

• Random walk according to Lévy	distribution (called 
the “Lévy flight”) – method of searching the space of 
solutions, using Lévy statistical distribution in order 
to generate the steps for solution space search.

2.  In reference to the proposed method, a numerical proto-
type has been constructed for the calibration inverse pro-
blem, based on reservoir simulation and the final nume-
rical procedure;

3.  Tests of convergence of the constructed algorithm were 
carried out. The tests included verification of convergen-
ce of the proposed method on the example of analytical 
test functions (the so-called “benchmark functions”) and 
the actual simulation model of shale formations.

Conclusions

1. Due to the nature of the problem being solved (poor-
ly-conditioned inverse problem) the proposed algorithm 
combines traditional optimization methods with methods  
utilising stochastic optimization techniques. Such a solution  

is aimed at constructing an efficient algorithm, both in 
the case of global optimization (efficient searching thro-
ugh multidimensional space of solutions) and local opti-
mization resistant to the phenomenon of “premature  

2 0

2.5

3.0

3.5

4.0

on
 o
f o
ilW

O
PT
 [m

3 ]

"Manual" calibration
Observation data
"Automatic" calibration

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60 70 80

Cu
m
ul
at
iv
e 
pr
od
uc
ti

Time [days]

6 000

8 000

10 000

12 000

on
 o
fg
as
 W

GP
T 
[m

3 ]

"Manual" calibration
"Automatic" calibration
Observation data (calculated)

0

2 000

4 000

6 000

0 20 40 60 80

Cu
m
ul
at
ive

 p
ro
du
ct
io

Time [days]

200

250

300

350

ss
ur
e
W
BH

P 
[b
ar
] Observation data (converted)

"Manual" calibration
"Automatic" calibration
Observation data (measured)

0

50

100

150

0 10 20 30 40 50 60 70 80

Bo
tt
om

 h
ol
e 
pr
es

Time [days]



NAFTA-GAZ

876 Nafta-Gaz, no. 11/2015

convergence” in other words, the loss of convergence of 
the algorithm as a result of achieving a local minimum.

2. Algorithm’s ability to correct results in a fast and continu-
ous way, appears to be more important than the answer to 
the question of whether it is able to find a global optimum. 
This is the result of the specific nature of the problem be-
ing solved. In the case of shale formations, due to the in-
sufficient identification and shortage of laboratory test re-
sults (concerning in complete formation characterization), 
we often do not know the approximate variability ranges of 
the near-well zone fracture. In addition, we possess spar-
se observational data which constitutes the basis for quali-
ty assessment of solutions generated by the algorithm. In 
such a situation, it seems more important to effectively se-
arch the solution space and to quickly find an approximate  
solution (in practice, it allows for a more accurate estimation  

of the ranges of parameter variability) than striving at all 
costs to find the global optimum, which in the case of the 
calibration inverse problem, is virtually impossible.

3. An important parameter for evaluating the effectiveness 
of the algorithm is its operation time, necessary to obta-
in a satisfactory result which in the case of the inverse 
calibration problem is reflected in the number of the ob-
jective function determination. It must be noted that in 
case of problem solving, the calculation of the objective 
function infers launching simulation runs for the values 
of optimization parameters determined by the algorithm. 
Depending on the degree of model complexity (number 
of blocks of the model, applied model of the reservoir flu-
id), the duration of a single simulation ranges from a do-
zen to several dozen minutes and in extreme cases can 
range up to several hours in length.
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