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The pseudo-acoustic equations of the scalar 
wavefield in anisotropic media

In this paper we present a new formulation of scalar pseudo-acoustic wave equation in arbitrary anisotropic media 
TI (Transverse Isotropy) type for 2D and 3D cases. These equations, based on precise dispersion relation, determi-
ne eigenvalue – temporal frequency as the function of wavenumber and anisotropy parameters. Here we present 
a few snapshots obtained for different signals by one-way equation.

Key words: forward modelling, TI, Transverse Isotropy, pseudo-acoustic equation, one-way equation, dispersion 
relation.

Pseudoakustyczne równanie skalarnego pola falowego w ośrodkach anizotropowych
W artykule przedstawiono nowe sformułowanie skalarnych pseudospektralnych równań falowych w dowolnych 
ośrodkach anizotropowych typu TI (Transverse Isotropy) dla przypadków 2D i 3D. Równania bazują na dyspersyjnych 
relacjach wyznaczających wartości własne – częstotliwości w funkcji liczb falowych i parametrów anizotropii na 
podstawie pełnego systemu równań akustycznych. Zaprezentowano kilka przypadków propagacji falowej określonej 
jednostronnym równaniem w formie migawkowych zdjęć dla różnych typów sygnału.

Słowa kluczowe: anizotropia, poprzeczna izotropia (TI), modelowanie, jednostronne równanie falowe, relacja 
dyspersyjna.

Forward modelling of seismic waves in anisotropic media 
should be executed by solving a full system of elastic wave 
equations using numerical techniques such as finite-difference, 
spectral and pseudo-spectral method [3, 7, 9, 10, 11, 17, 19, 
20, 23]. Due to the very time-consuming calculation system 
of modelling three component acoustic field and insufficient 
data concerning elastic parameters, in practical seismic research 
the tendency to simplify the theory and to limit oneself to the 
considerations of a few models of anisotropy can be noted. 

Alkhalifah T. [1, 2] introduced for P (compressional) wave 
fourth–order pseudo-acoustic scalar equations in the space–time 
domain. In this equation for vertical transverse isotropy (VTI) 
shear wave velocity VS = 0 is assumed. Alkhalifah’s approxima-
tion was an inspiration for many studies [4–6, 21, 22].

In this paper, we present pseudo-acoustic wave equations, 
first and second order, versus time in the wavenumbers domain 
for transverse isotropic media (TI). Some numerical examples 
were presented as snapshots of propagating wavefields.

Introduction

Dispersion relations

Let us consider the TTI (Tilted Transverse Isotropy) model 
in which the plane of symmetry is dipping at angle θ versus 
the horizontal XOY plane, and the symmetry axis lies in the 
XOZ plane, i.e. in the plane of acquisition. This model is the 
starting point for other models of transverse isotropy, i.e. 

for VTI (Vertical Transverse Isotropy) and HTI (Horizontal 
Transverse Isotropy) for azimuthal angle accordingly Ψ = 90o 
and θ = 90o. In this case, deriving eigenvalue ωa – tempo-
ral frequency from the full system of elastic equations, we 
obtain [13]:
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The solution of the biquadratic equation (1) for upgoing 
waves is the following:
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In the formulas (3) the sign (+) refers to acquisition moving 
along the X axis in the positive direction of the axis, i.e. “dip 
down”; while the sign (–) refers to the “dip-up” direction. In 
relation (3) dij are components of elastic tensor Dθ.Ψ = 90o for 
azimuthal angle Ψ = 90o [15].

From the relation (1–3) with the assumption that velocity 
of shear wave VSV = 0 we obtain for VTI (θ = 0o) and HTI 
(θ = 90o) models the following equations:
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In relations (4–5) the compressional velocity Vpz and Vpx 
mean velocities in perpendicular directions to symmetry planes, 
i.e. to the XY plane for the VTI model and to the ZY plane for 
the HTI model, q = 1 + 2ε and ηa = 2(ε – δ), where ε and δ are 
Thomsen’s [18] parameters and kx, kz are wavenumbers.

Generally, the equation (1) can be obtained in the 2-di-
mensional case as the result of matrix equation solving:
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where the elements of symmetrical matrix [aik] are functions 
of wavenumbers kx, kz, Thomsen’s parameters and angles: 
θ, Ψ, Ux and Uz are components of the displacement. Equa-
tion (6) means that component Uy does not exist in the first and 
second lines of the matrix, which was constructed according 
to Hooke’s Law, and can be solved by the calculation of the 
determinant of the matrix (6).

The precondition for the determination of the two di-

mensionality of wavefield 0


y
Uy   does not eliminate the 

component Uy.

If the component Uy arises in each line of the matrix, then 
we have the determinant of the third order matrix.
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In this case, the eigenvalue of equation (7), i.e. temporal 
frequency ωa is expressed by an algebraic equation of the sixth 
order. This is a consequence of the fact that in elements a11, 
a22, a33 of matrix (7) quadric frequency ωa remains.  

This allows the reduction of the equation to a form named 
Cardano’s equation:

 y3 – By2 + Cy – H = 0                         (8)

If we assume

  Bxya 3
12                              (9)

then the equation (8) takes the form

  x3 + xl1 + l2 = 0                             (10)

Cardano’s solution of the equation (10) has the form
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Taking in considerations that each component of the dij 
elasticity tensor contains squared velocity VP

2 in a perpen-
dicular direction to the isotropy plane, and considering the 
structure of relations (2–3) and (11–12), we can easily notice 
that the relation
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is valid (stands) for 2D and 3D dimensional cases [equation (7)].
In equation (13) ka

2 corresponds to the function of vector 
wave components, angles θ and Ψ Thomsen’s parameters 
(ε and δ), and is the solution of equation (2) for the 2D case 
and the solution of equation (11) for the 3D case, where the 
separation of velocity Vp was used.

From (13), by multiplying both sides by the scalar P(kx, 
ky, kz, ωa) in wavenumbers (kx, kz) – frequencies ωa domain 
and after applying inverse Fourier (ω → t) we obtain

      024  GFaa                      
(1)
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i.e. the two-way equation named pseudo-acoustic.
From (14) we have
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i.e. the one-way equation wavefield.
The direction of propagation is fixed by the sign of tem-

poral frequency ωa. In the Cartesian system of coordinates 
with the Z axis directed “down” and representing depth of 
medium, sign (+) in relation (15) describes the upcoming 
wave towards z = 0.

Generally, the solution of equation (14) is the relation 
expressed by the Fourier transform:
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In heterogeneous anisotropic media, equation (15) should 
be replaced by the spectral form, and then we have:
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where F(x → kx, y → ky, z → kz) and F –1(x → kx, y → ky, 
z → kz) are operators representing the Fourier transform from 
the (x, y, z) domain to the (kx, ky, kz) domain, and vice versa. 

The sought after wavefield in time t = Dt can be approxi-
mated by the truncated (three derivatives) Taylor’s series 
for t = 0: 
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This third-order scheme is stable in the isotropic case [8]. 
The assumed seismic signal at time t = 0 is the initial wave-
field, whereas its first derivative at time t = 0 is expressed 
by equation (17).

The second and third derivatives are expressed as fol-
lows:
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Relations (16) and (17–20) define process of wave propa-
gation in the determined direction in anisotropic media.

According to Loventhal’s et al [16] conception of simul-
taneously excited seismic reflectors, the zero-offset time sec-
tion can be obtained when a half velocity 1/2Vp is accepted 
as the velocity of wavefield propagation. The construction 
of zero-offset sections is based on the principle of addition 
waves recorded on z = 0 [13, 14]. The principle advantage 
of the one-way equation application is the elimination of 
multiples.

Generally, the time section for arbitrary offset can be 
obtained using the second order wave equation described 
by relation (14). Then, we use time differencing schema for 
the finite expression of the second order time derivative. 
However, all space derivative terms are evaluated by using 
Fourier transform methods.
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Testing

To verify the correctness of wave propagation in media with 
different properties of anisotropy some numerical experiments 
using one-way equation (17) and Taylor’s relations (18–20) 
were made. The main aim of those experiments was the esti-
mation of the usefulness of the applied signals. In experiments 
were assumed anisotropic medium HTJ with Thomsen’s pa-
rameters: ε = 0.3 and δ = 0.1; velocity of compressional wave 
Vp = 2000 m/s (in perpendicular direction to plane isotropy).

The exited signal is set in a point with coordinates: 
x = 6000 m, z = 2400 m. We used tree signals: Ricker’s 
60 Hz signal, and two signals shown in Fig. 1: the zero-phase 
signal and a signal in spike form. In Fig. 2 a snapshot of the 
propagated Ricker’s signal for time t = 0.2 s is shown.

The circle forming the wave front is caused by the ac-
cepted azimuthal angle Ψ = 0o, which means that propagation 
in the XOZ plane is made in the isotropic plane. The image 

Fig. 1 The signals which were used for numerical experiments 
– a), zero-phase signal – b), signal in the form of a spike

zero-phase
signal

signal 
in from
of spike
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of the wavefront is distorted by random noise. For these 
same parameters of HTI media with azimuthal range Ψ = 0o 
and for zero-phase signal a snapshot was obtained, which is 
kinematically similar (Fig. 3) to the result in Fig. 2. 

Without any doubt, better resolution is observed when we 
use the signal in spike form (Fig. 4).

In Fig. 5 we present a snapshot of the signal in spike 
form propagation in HTI media with parameters: ε = 0.3, 
δ = 0.2, Ψ = 15o.

In this case, we can observe a changed form of wavefront, 
which is now ellipsoidal. Numerical experiments were made 
with steps: Dx = Dz = 4 m; Dt = 0.5 ms.

Fig. 3. A snapshot of zero-phase signal propagation for time 
Dt = 0.2 s and for ε = 0.3, δ = 0.1; azimuthal angle Ψ = 0°. 

Steps of calculations: Dx = Dz = 0.4 m, Dt = 0.5 ms

Fig. 4. A snapshot of spike signal propagation for time  
Dt = 0.2 s and for ε = 0.3, δ = 0.1; azimuthal angle Ψ = 0°. 

Steps of calculations: Dx = Dz = 0.4 m, Dt = 0.5 ms

Fig. 5. The comparison of snapshots of spike signal 
propagation for ε = 0.3, δ = 0.1; azimuthal angle Ψ = 0° 

(in red) and Ψ = 30°

Fig. 2. A snapshot of Ricker’s 60 Hz signal propagation for 
time Dt = 0.2 s and for ε = 0.3, δ = 0.1; azimuthal angle 

Ψ = 0°. Steps of calculations: Dx = Dz = 0.4 m,  Dt = 0.5 ms

Discussion and conclusions

Here, we have presented some examples of wave propaga-
tion in HTJ(Ψ) as a function of azimuthal angle Ψ based on 
a one-way equation in the wavenumber frequency domain. 
In order to obtain the images of propagation waves for both 
directions (±ω) one should make separate calculations for the 
propagation wave into z = 0 and in the opposite direction and 

then stick to those images. In this way we created the circum-
stance to use one way equation without multiples in reflection 
seismic models.
To sum up, in this work:
• generalized pseudo acoustic equations (shear velocity 

Vs =  0) in anisotropic media for arbitrary transverse isotropy 
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