Jan Lubaś, Mateusz Masłowski Instytut Nafty i Gazu, Oddział Krosno

Analiza zjawisk wchłaniania kapilarnego w szczelinowatych utworach dolomitu głównego

Wprowadzenie

W złożach z matrycowo-szczelinowym systemem porowatości możliwość zastosowania konwencjonalnych metod zatłaczania wody może być ograniczona, ze względu na niebezpieczeństwo przepływów szczelinowych i omijania mniej przepuszczalnej matrycy przez zatłaczane media.

W niektórych przypadkach zjawisko to może być rekompensowane kapilarnym wchłanianiem zatłaczanej wody przez zwarty blok matrycy, w oparciu o procesy nasiąkliwości. Wypieranie ropy z bloków matrycy do systemu otaczających szczelin może być niekiedy istotnym mechanizmem wydobycia ropy ze złóż szczelinowatych z nisko przepuszczalną matrycą.

Przykładem wdrożenia do praktyki nawadniania wchłaniającego jest węglanowe złoże Ekofisk, gdzie po pozytywnych wynikach badań laboratoryjnych zastosowano je w roku 1981, w 10 lat od rozpoczęcia eksploatacji złoża [3]. Złoże to charakteryzuje się jednak bardzo korzystną budową geologiczną, a przede wszystkim nie posiada czapy gazowej. Wielkość efektu wchłaniania kapilarnego w ośrodku porowatym jest różnicą sił ciśnienia kapilarnego wymuszającego wchłanianie i oporów przepływu wynikających z lepkości płynów złożowych.

Kapilarne wchłanianie wody – z równoczesnym wypieraniem ropy – ma miejsce szczególnie w przypadku skał wodozwilżalnych. Wodozwilżalność oraz możliwie duża ekspozycja powierzchni matrycy są decydującymi czynnikami zapewniającymi efektywność wchłaniania. Wykonane dotychczas w INiG prace badawcze [4] wskazują jednak na mieszany typ zwilżalności skał z poziomu dolomitu głównego, o przewadze ropozwilżalności.

Celem przeprowadzonych badań było określenie efektów wypierania ropy wodą w tak skomplikowanym rodzaju skały złożowej i odpowiedzi na pytanie, w jakim stopniu proces wchłaniania kapilarnego przez skały matrycy dolomitu głównego będzie wpływał na skuteczność nawadniania złoża.

Modelowanie wypierania ropy z wykorzystaniem zjawisk wchłaniania kapilarnego

Przed przystąpieniem do prac związanych z projektowaniem zabiegu nawadniania danego złoża z wykorzystaniem zjawisk wchłaniania kapilarnego niezbędnym jest wykonanie odpowiednich badań modelowych. Złoże przedstawiane jest jako kombinacja wielu niewielkich bloków matrycy, rozdzielonych systemem szczelin. Analityczny model opisujący wypieranie ropy w oparciu o zjawisko wchłaniania opracował Aronofsky [1]. Wykorzystano w nim wyniki badań laboratoryjnych rdzeni, które następnie przenoszone są na skalę złoża.

Proces wchłaniania kapilarnego można przedstawić w postaci matematycznej, jako równanie Gupta i Civa-

na [2], często stosowane do analizy przepływów w złożach szczelinowatych:

$$\frac{dV}{dt} = -\lambda \cdot V^{\alpha} \tag{1}$$

gdzie:

- V objętość ropy pozostała do wydobycia w procesie wchłaniania kapilarnego,
- α doświadczalny wykładnik prędkości,
- λ współczynnik proporcjonalności,

dla warunków początkowych, gdy $V = V_o$ w czasie t = 0, gdzie V_o oznacza początkową objętość ropy oraz dla $\alpha = 1$:

$$V = V_o \cdot e^{-\lambda \cdot t} \tag{2}$$

Odzysk ropy, będący wynikiem procesu wchłaniania, można określić bezwymiarową wielkością:

$$R_i = \frac{(V_o - V)}{V_o} \tag{3}$$

Uwzględniając równanie (2) otrzymujemy:

$$R_i = 1 - e^{-\lambda \cdot t} \tag{4}$$

Objętość ropy wydobytej podczas procesu wchłaniania kapilarnego określa równanie:

$$V_k = V_o - V \tag{5}$$

Uwzględniając równanie (2) otrzymujemy:

$$V_k = V_o \cdot (1 - e^{-\lambda \cdot t}) \tag{6}$$

Określenie ilości wydobywanej w procesie wchłaniania kapilarnego ropy (q_o) można otrzymać w wyniku obliczenia po czasie pochodnej wyrażenia (6):

$$q_o = \frac{dV_k}{dt} = \lambda \cdot V_o \cdot e^{-\lambda \cdot t} \tag{7}$$

W celu rozwiązania równania (7) należy sporządzić wykres wyników doświadczalnego badania rdzeni, oznaczając procentowy uzysk ropy w trakcie procesu wchłaniania w funkcji czasu, oraz w ujęciu bezwymiarowym $R_i = f(t_D)$, a więc wskaźnika odzysku ropy uzyskiwanej podczas procesu wchłaniania $R_i = V_k/V_o$.

Czas bezwymiarowy t_D

$$t_D = t \sqrt{\frac{k_m}{\Phi}} \cdot \frac{\sigma}{\mu_g} \cdot \frac{\cos(\theta)}{L_c^2}$$
(8)

gdzie:

t - czas wchłaniania [d],

- k_m przepuszczalność matrycy [m²],
- Φ porowatość [-],
- σ napięcie międzyfazowe [mN/m],
- μ_g efektywna lepkość cieczy, średnia geometryczna lepkość wody i ropy $\sqrt{\mu_o \cdot \mu_w}$ [Pa s],
- θ kąt kontaktu [stopnie],
- L_c długość charakterystyczna bloku matrycy w złożu jest połową odległości między szczelinami; wielkość tę można określić doświadczalnie, badając rdzenie wiertnicze [m].

Dopasowanie krzywej równania (4) do wyników eksperymentalnych $R_i = f(t_D)$ ma miejsce wówczas, gdy zachodzi równanie:

$$\lambda \cdot t = a \cdot t_D \tag{9}$$

gdzie *a* jest konkretną wartością liczbową, natomiast t_D wyliczamy z równania (8).

Wówczas, równanie dla określenia q_o przedstawiać się będzie w sposób następujący:

$$q_o = a \cdot V_o \cdot \sqrt{\frac{k_m}{\Phi}} \cdot \frac{\sigma}{\mu_g} \cdot \frac{\cos(\theta)}{L_c^2} \cdot e^{a \cdot t \cdot \sqrt{\frac{k_m}{\Phi}} \cdot \frac{\sigma}{\mu_g} \frac{\cos(\theta)}{L_c^2}} \quad (10)$$

Dysponując wynikami badań laboratoryjnych możliwym jest wykonanie szczegółowych obliczeń modelowych określających długoterminowy efekt nawadniania, z wykorzystaniem zjawisk wchłaniania kapilarnego, według przedstawionej metodyki obliczeniowej.

Badania laboratoryjne odzysku ropy w procesach kapilarnego wchłaniania wody

Próbki rdzeni wiertniczych reprezentatywne dla poziomu roponośnego złoża, rozpatrywanego jako potencjalny obiekt nawadniania, przygotowano zgodnie z obowiązującymi procedurami [5] – nasycając je płynami złożowymi, a więc solanką i ropą złożową.

Na rysunku 1 przedstawiono schemat szklanego naczynia pomiarowego do badania efektu wypierania ropy solanką w procesach wchłaniania kapilarnego [6]. Z kolei na fotografii 1 przedstawiono zestaw naczyń szklanych umieszczonych w cieplarce oraz zbliżenie widoku badanej próbki rdzenia (fotografia 2). Wytypowane rdzenie, nasycone ropą, umieszczono w środowisku solanki modelowej, wypełniającej naczynia pomiarowe. W wyniku wchłaniania

Rys. 1. Schemat naczynia szklanego do badania efektu wypierania ropy wodą w procesie wchłaniania kapilarnego

NAFTA-GAZ

Fot. 1. Widok naczyń szklanych do pomiaru efektu wypierania ropy wodą, wraz z umieszczonymi rdzeniami. Zestaw umieszczono w komorze termostatycznej, w temperaturze badania 60°C

kapilarnego solanka wypiera ropę z przestrzeni matrycy skalnej, która – przemieszczając się do góry – gromadzi się w cechowanych kapilarach, stanowiących górną część naczynia pomiarowego. Umożliwia to w efekcie określenie objętości odzyskanej ropy w funkcji czasu. Otrzymane wyniki odzysku ropy w procesie wchłaniania kapilarnego przedstawiono w tablicy 1. Następnie wyliczono wielkości R_i według równania (3) i zobrazowano w funkcji czasu (rysunek 2).

Analizując przedstawione na rysunku 2 wyniki, uzyskane w trakcie badań procesu wchłaniania, można zauważyć, że najkorzystniejsze spośród nich uzyskano na rdzeniu nr 946. Wielkość odzysku ropy w wyniku wchłaniania kapilarnego wody wynosi tutaj 12,03%. Podobne, choć

Fot. 2. Widok pojedynczego rdzenia, nasyconego wcześniej ropą, umieszczonego w środowisku solanki

Rys. 2. Wykres odzysku ropy w wyniku kapilarnego wchłaniania wody w temperaturze 60°C

0,53

0,65

1,05

0,8

0,75

0,04

0,13

0,09

0.09

0,03

Nazwa rdzenia	Ilość ropy – wypieranie kapilarne V _k [ml]	Ilość wytłoczonej ropy przy wydajności tłoczenia solanki q = 0,1 [ml/min.]	Ilość wytłoczonej ropy przy wydajności tłoczenia solanki q = 0,5 [ml/min.]	Sumaryczna ilość ropy – wytłaczanie solanką V_f [ml]	Indeks zwilżalności I _w
957	0,01	0,2	0,0	0,2	0,05
945	0,42	1,3	0,1	1,4	0,23
946	0,50	2,0	0,2	2,2	0,19
948	0.22	1.9	0.1	2.0	0.10

0,03

0,05

0,05

0,05

0,0

0,5

0,6

1,0

0,75

0,75

Tablica 1. Określenie wielkości odzysku ropy podczas wchłaniania kapilarnego na wybranych rdzeniach oraz wytłaczania solanką i wyliczenie indeksu zwilżalności

920

923

952

925

956

0,02

0,10

0,10

0,08

0,02

nieco niższe wyniki uzyskano odpowiednio: 9,45% dla rdzenia nr 948 oraz 8,88% dla rdzenia nr 945. Następne w kolejności to: rdzeń nr 952, gdzie uzyskano 5,34% odzysku ropy i rdzeń nr 923, gdzie uzyskano 3,18% odzysku ropy. Trzecia grupa to pozostałe rdzenie, o wartościach odzysku ropy w granicach od 0,54% do 1,81%.

Oceniając ilości odzyskanej ropy w wyniku wchłaniania kapilarnego wody trzeba stwierdzić, że nie są one wysokie, a dla niektórych rdzeni wręcz bardzo niskie. Średnia wartość dla 11 rdzeni wynosi 4,1%.

Wielkość efektów wypierania kapilarnego można również ocenić w oparciu o wartości indeksu zwilżalności: $I_w = R_i(R_i + R_i),$

 $I_w = \frac{V_k}{\left(V_k - V_f\right)}$

lub

gdzie:

 R_f – wielkość dodatkowego odzysku ropy, solanką zatłaczaną pod ciśnieniem 14 bar,

 V_f – objętość odzyskanej ropy metodą zatłaczania solanki.

Zgodnie z procedurą badawczą przedstawioną w opracowaniu [5], w każdym rdzeniu poddanym wcześniej badaniom efektu wchłaniania kapilarnego należy przeprowadzić wypieranie ropy solanką zatłaczaną przy ciśnieniu 14 bar, co pozwoli dodatkowo określić stopień odzysku ropy (R_d)

$$R_f = \frac{V_f}{V_o} \tag{12}$$

W tym celu na stanowisku badawczym, którego schemat zilustrowano na rysunku 3, wykonano odpowiednie badania, przetłaczając przez każdy rdzeń z osobna solankę w ilości: 3 objętości porowe z wydatkiem przepływu 0,1 ml/min. oraz 5 objętości porowych z wydatkiem przepływu 0,5 ml/min. Wytłaczaną ropę oraz solankę odbierano w cylindrze pomiarowym.

Uzyskane wyniki przedstawiono również w tablicy 1.

Otrzymane wartości indeksu zwilżalności oscylują w granicach 0,03–0,23 i niżej (średnio 0,106), a więc są bardzo niskie – znacznie niższe od granicznej wartości 0,6 [7]. Wskazuje to na bardzo znikomy udział efektu wypierania kapilarnego w procesach odzysku ropy z badanych próbek skał dolomitu głównego.

Przedstawione na rysunku 2 wartości odzysku ropy R_i w funkcji czasu przeskalowano na wartości znormalizowane R_n i przedstawiono na wykresie semilogarytmicznym, w funkcji czasu bezwymiarowego t_D (rysunek 4).

Dla wyliczeń zilustrowanych na rysunku 4, $\lambda = 0,4133$ – co w danych warunkach odpowiada wartości liczbowej *a* z równania $\lambda t = a t_D$. Wówczas:

$$q_o = 0.4133 \cdot V_o \cdot \sqrt{\frac{k_m}{\Phi}} \cdot \frac{\sigma}{\mu_g} \cdot \frac{\cos(\theta)}{L_c^2} \cdot e^{-0.4133t \cdot \sqrt{\frac{k_m - \sigma}{\Phi}} \frac{\cos(\theta)}{L_c^2}}$$
(13)

Wstawiając do równania (13) odpowiednie wartości poszczególnych parametrów petrofizycznych oraz właściwości płynów złożowych – można określić wielkość

(11)

Rys. 3. Schemat stanowiska do badania zjawisk wypierania mediów z próbek rdzeni (nasycanie i wypieranie)

Objaśnienia: 1 – pompy, 2 – zawory regulacyjne, 3 – zbiorniki ciśnieniowe na ciecze robocze, 4 – manometry ciśnienia, 5 – badane próbki rdzeni w uszczelnieniu ciśnieniowym, 6 – płaszcz uszczelnienia ciśnieniowego, wypełniony wodą, 7 – płaszcz grzewczy, wypełniony olejem grzewczym, 8 – zawór zwrotny, 9 – cylindry do pomiaru objętości odbieranej cieczy

NAFTA-GAZ

odzysku ropy z określonego fragmentu złoża. W przypadku badanych próbek rdzeni będzie on jednak znikomy, ze

względu na niewielki udział zjawisk wchłaniania kapilarnego w procesie nawadniania badanego złoża.

Podsumowanie

W oparciu o wykonane w warunkach laboratoryjnych badania modelowe procesów nawadniania z wykorzystaniem zjawisk wchłaniania kapilarnego, wykazano niewielką efektywność tych zjawisk w wybranych próbkach dolomitu głównego. Oceniając ilości odzyskanej ropy można stwierdzić, że nie są one wysokie, a dla niektórych rdzeni wręcz bardzo niskie; średnia wartość dla 11 rdzeni wynosi 4,1%. Wielkość efektów wypierania kapilarnego można również ocenić w oparciu o wartości indeksu zwilżalności, które oscylują w granicach 0,03–0,23 (średnio 0,106), a więc znacznie poniżej granicznej wartości 0,6. Wskazuje to na bardzo znikomy udział efektu wypierania kapilarnego w procesach odzysku ropy metodą nawadniania z badanych próbek dolomitu głównego.

Artykuł nadesłano do Redakcji 12.02.2010 r. Przyjęto do druku 27.04.2010 r.

Literatura

- [1] Aronofsky J.S. et al.: *A model for the mechanism of oil recovery from the porous matrix due to water invasion in fractured reservoirs.* AIME, vol. 213, 1958.
- [2] Gupta A., Civaans F.: *An improved model for laboratory measurement of matrix to fructure transfer function parameters in immiscible displacement.* SPE 28929, 1994.
- [3] Larry W. Lake: *Reservoir Engineering and Petrophysics*. *Petroleum Engineering Handbook*. SPE. USA, 2007.
- [4] Praca INiG: Badania laboratoryjne zwilżalności rdzeni wiertniczych z nowych otworów pod kątem możliwości

Doc. dr hab. inż. Jan LUBAŚ – absolwent AGH w Krakowie. Pracownik naukowo-badawczy Instytutu Nafty i Gazu, aktualnie kierownik krośnieńskiego Oddziału INiG. Specjalizuje się w zagadnieniach technologii eksploatacji złóż ropy naftowej i gazu ziemnego. Autor wielu publikacji, patentów oraz opracowań, z których większość została wdrożona w przemyśle. zastosowania wtórnych metod oddziaływania na złoże. Kraków, 2008.

Recenzent: prof. dr hab. inż. Józef Raczkowski

- [5] Praca INiG: Wykonanie badań i obliczeń modelowych metody nawadniania złoża z zastosowaniem wchłaniania kapilarnego. Krosno, 2009.
- [6] Prace Texas A&M University, 2004, *Imbibition assisted oil recovery.*
- [7] Schechter D.S.: Advanced reservoir characterization and evaluation of CO₂ gravity drainage in the naturally fracture Spraberry Trend Area. PRRC Report 96–42, 1996.

Mgr inż. Mateusz MASŁOWSKI – absolwent Wydziału Wiertnictwa Nafty i Gazu Akademii Górniczo-Hutniczej w Krakowie. Pracownik Zakładu Stymulacji Wydobycia Węglowodorów w Instytucie Nafty i Gazu w Krakowie, Oddział Krosno. Zajmuje się zagadnieniami związanymi ze stymulacją złóż węglowodorów.