Jolanta Klaja, Irena Gąsior Instytut Nafty i Gazu, Kraków

NAFTA-GAZ

Ilościowa ocena przestrzeni porowej zajętej wodą związaną w iłach, z wykorzystaniem metody magnetycznego rezonansu jądrowego

Wstęp

Obecność iłów w skale znacząco wpływa na własności zbiornikowe i filtracyjne piaskowców. Woda związana w iłach powoduje zmniejszenie porowatości efektywnej oraz przepuszczalności skał piaskowcowych. Znajomość wielkości przestrzeni porowej skał zajętej wodą związaną w iłach pozwala na dokładne wyznaczanie porowatości efektywnej piaskowców – ważnego parametru, wykorzystywanego w interpretacji profilowań geofizyki otworowej do szacowania przepuszczalności skał. Standardowo do wyznaczenia wielkości parametru Kp_{il} wykorzystuje się laboratoryjny pomiar wskaźnika pojemności wymiany kationowej *CEC*, który przelicza się na wielkość parametru Qv(*CEC* na jednostkę objętości) lub bezpośredni pomiar Qv. Oba pomiary są dużo bardziej kosztowne i czasochłonne w porównaniu z metodą magnetycznego rezonansu jądrowego. Potwierdza to celowość podjęcia powyższej tematyki.

Podstawy teoretyczne

Specyficzną cechą minerałów ilastych jest ich wysoka hydrofilność, plastyczność, zdolność do adsorpcji, wymiany jonowej oraz pęcznienia. Woda związana w iłach to woda zatrzymana w przestrzeni międzypakietowej oraz na powierzchni minerałów ilastych wiązaniami elektrochemicznymi [8]. Zdolność iłów do wiązania wody odzwierciedla wskaźnik pojemności wymiany kationowej (*CEC*). Parametr ten zależy od rodzaju minerałów ilastych i jest

proporcjonalny do wielkości ich powierzchni właściwej (zewnętrznej i wewnętrznej). Największą zdolność do wiązania wody mają minerały ilaste charakteryzujące się wysokim wskaźnikiem wymiany kationowej (*CEC*), takie jak: smektyt, mieszano-pakietowe illytsmektyt i illit. W przypadku chlorytu i kaolinitu wielkość *CEC* jest mniejsza (tablica 1).

Wielkość *CEC*, odniesiona do jednostki objętości poru (parametr Qv), została wykorzystana przez Hill'a, Shorley'a i Klein'a [4] do wyznaczania porowatości iłów (Kp_{ii}) w skałach w pełni nasyconych solanką. Parametr Qv można wyznaczyć wprost – stosując metodę, w której szereg razy mierzy się przewodność elektryczną skały, nasycanej solanką o różnej mineralizacji [1 *vide* 8]. Badania te wykonuje się na całych (nie rozdrobnionych) próbkach, co pozwala uwzględnić rozkład minerałów ilastych w przestrzeni porowej oraz inne właściwości petrofizyczne badanych skał. Metoda

Tablica 1. Powierzchnia właściwa i CEC minerałów ilastych*

Rodzaj	Pow	CEC		
mmeraiu	wewnętrzna	zewnętrzna	całkowita	[meq/100 g]
Smektyt	750	50	800	80-150
Illit	5	15	30	10–40
Kaolinit	0	15	15	1–10
Chloryt	0	15	15	< 10

*Według: Eslinger & Pevear [2] vide Martin & Dacy [8]

wielonasyceniowa ma jednak swoje ograniczenia. Próbki muszą być dostatecznie przepuszczalne, aby umożliwić przepływ solanki podczas procesu pomiarowego. Ponadto pomiar jest bardzo czasochłonny – trwa od kilku dni do kilku tygodni. W Polsce metoda ta nie jest stosowana.

Inny sposób, zastosowany w przedstawionej pracy, polega na obliczeniu parametru Qv z zależności:

$$Qv = CEC \frac{1 - Kp}{Kp} \cdot \delta_{ma} \tag{1}$$

gdzie:

Kp – porowatość całkowita, w ułamku jedności,

 δ_{ma} – gęstość szkieletu skały [g/cm³],

- CEC wskaźnik pojemności wymiany kationowej [mval/100 g],
- Qv wskaźnik pojemności wymiany kationowej na jednostkę objętości poru [mval/cm³].

W metodzie tej zakłada się równomierny rozkład *Qv* w badanej próbce.

Związek Qv z objętością wody związanej w iłach i mineralizacją solanki przedstawili Hill, Shirley i Klein [4]:

$$1 - \frac{Kpef}{Kp} = \frac{Vs}{Vp} = (0,084C_o^{-1/2} + 0,22)Qv$$
(2)

gdzie:

 Kp_{ef} – porowatość efektywna, zdefiniowana jako: $Kp_{ef} = Kp - Kp_{il}$, w ułamku jedności,

Kp – porowatość całkowita, w ułamku jedności,

Vs – objętość wody związanej [cm³],

Vp – całkowita objętość porów [cm³],

Co – mineralizacja roztworu nasycającego [eq/ml].

Równanie to następnie przekształcił Juhasz [5], uzyskując postać, w której zasolenie roztworu nasycającego wyrażone jest w powszechnie stosowanych jednostkach [g/l] NaCl:

$$1 - \frac{Kpef}{Kp} = (0,6425S^{-1/2} + 0,22)Qv$$
(3)

gdzie:

S - mineralizacja roztworu nasycającego [g/l].

Zarówno w badaniach NMR jak i w interpretacji profilowań otworowych przyjmuje się, że porowatość efektywna oznacza część przestrzeni porowej nie zawierającej wody związanej w iłach [8, 10]. Zatem przekształcając równanie (3) otrzymamy zależność pozwalającą wyznaczyć wielkość porowatości iłów (Kp_{ii}):

$$Kp_{il}^{-1} = Kp \times SF \times Qv \tag{4}$$

gdzie:

SF (*Sainity Factor*) = $0,6425 \text{ S}^{-0.5} + 0,22$ (rysunek 1).

Wykorzystanie badań NMR do określania Kp_{il} wymaga wyznaczenia wielkości czasu relaksacji poprzecznej T_{2il} – odpowiadającej porowatości iłów. Wyznaczając średnią wartość T_{2il} dla danego basenu sedymentacyjnego uzyskujemy możliwość określenia porowatości iłów dla skał pochodzących z tego basenu. W porównaniu z wcześniej opisanymi sposobami wyznaczania porowatości iłów, metoda NMR jest niewątpliwie prostsza, mniej kosztowna, szybsza, a ponadto uwzględnia rozkład minerałów ilastych w przestrzeni porowej i nie ma ograniczeń związanych z niską przepuszczalnością badanych skał.

Rys. 1. Zależność parametru *SF* od mineralizacji roztworu nasycającego NaCl [g/l] [8]. Największe zmiany parametru *SF* związane są z niskim stężeniem roztworu (poniżej 10 g/l) [5]

Określenie czasu relaksacji poprzecznej T_{2i}

Woda związana w iłach odpowiada najkrótszym czasom relaksacji w rozkładach T_2 wyznaczonych dla próbek skał, stąd objętość porów odpowiadająca krótkim czasom relaksacji (poniżej pewnej wartości T_{2il}) będzie reprezentować objętość wody związanej w iłach. W praktyce określenie parametru T_{2il} dla poszczególnych próbek sprowadza się do odniesienia porowatości iłów – wyznaczonej z równania (4) – do krzywej kumulacyjnej porowatości, wyznaczonej z rozkładu T_2 . Czas relaksacji, dla którego różnica porównywanych porowatości osiągnie najmniejszą wartość jest szukanym parametrem T_{2il} (rysunek 2). Próby wyznaczenia

¹ W dalszej części pracy, gwoli przejrzystości tekstu, porowatość iłów wyznaczoną na podstawie Qv ze wzoru (4) oznacza się symbolem $Kp_{il\ lab}$

NAFTA-GAZ

Rys. 2. Wyznaczenie parametru T_{2il} . Kp_{72i} – porowatość obliczona z krzywej kumulacyjnej porowatości NMR dla danego T_2 , Kp_{il} $_{lab}$ – porowatość iłów na podstawie Q (wzór 4)

wartości T_{2il} podejmował m.in. Straley et al. [9], uzyskując dla 45 próbek piaskowców średni czas T_{2il} równy 3 ms. Freedman, et al. [3 *vide* 8] wyznaczyli Qv z CEC dla zailonych piaskowców, a następnie – porównując wielkość porowatości iłów z rozkładami T_2 – uzyskali najlepszą zgodność dla czasu T_{2il} równego 1 ms. Martin & Dacy [8] przeprowadzili badania 80 próbek piaskowców, otrzymując wartość T_{2il} równą 2,8 ms.

Wykonane badania

Do badań wytypowano siedemnaście próbek piaskowców mioceńskich, o różnym stopniu zailenia. Skały charakteryzują się zróżnicowanymi własnościami zbiornikowymi i filtracyjnymi: porowatość całkowita zmienia się w zakresie od 5,86 do 26,30%, a przepuszczalność – od 0,0 do 458 mD.

Wyznaczenie porowatości iłów na podstawie wskaźnika wymiany kationowej, gęstości i porowatości całkowitej

Porowatość iłów wyznaczono dla każdej próbki (wzór 4). W obliczeniach przyjęto parametr *SF* równy

0,311 - co odpowiada mineralizacji roztworu NaCl (50 g/l), jakim były nasycone próbki pod kątem badań NMR. Pojemność wymiany kationowej przypadającą na jednostkę objętości poru (Qv) określono na podstawie wielkości *CEC* dla skały zmielonej. Wyniki obliczeń, wraz z parametrami charakteryzującymi własności petrofizyczne poszczególnych próbek, zamieszczono w tablicy 2. Porowatość iłów zmienia się w zakresie od 2,07 do 18,13%. Badania składu mineralnego skał z rejonu Palikówka wskazują na małą zmienność składu frakcji ilastej – są to przede wszystkim minerały mieszano-pakietowe illit-smektyt oraz

Numer próbki	Кр [%]	Kp _{rz} [mD]	V_{il} [%]	Gęstość [g/cm ³]	CEC [*] [mval/g]	Qv [mval/cm ³]	Kp _{il_lab} [%]
1	6,22	0,04	12	2,677	0,0440	1,7759	3,44
2	25,05	85,91	13	2,695	0,0699	0,5636	4,39
3	21,83	16,47	17	2,694	0,0698	0,6733	4,57
4	22,76	12,36	14	2,683	0,0918	0,8359	5,92
5	20,01	0,00	45	2,758	0,2643	2,9139	18,13
6	12,93	10,39	8	2,710	0,0282	0,5146	2,07
7	5,86	0,01	6	2,704	0,0307	1,3336	2,43
8	26,35	458,45	4	2,691	0,0353	0,2655	2,18
9	24,91	204,50	7	2,676	0,0444	0,3582	2,77
10	14,17	1,55	24	2,715	0,1343	2,2086	9,73
11	18,97	28,83	10	2,708	0,0719	0,8317	4,91
12	17,9	0,67	29	2,691	0,1343	1,6576	9,23
13	17,01	0,55	17	2,688	0,1309	1,7167	9,08
14	24,43	153,02	3	2,684	0,0338	0,2806	2,13
15	8,68	0,03	13	2,722	0,0485	1,3889	3,75
16	26,30	3,79	19	2,670	0,1157	0,8657	7,08
17	19,74	0,00	36	2,674	0,2671	2,9039	17,83

Tablica 2. Wyniki obliczeń, wraz z parametrami charakteryzującymi własności zbiornikowe badanych skał

*Parametr wyznaczony w Instytucie Nauk Geologicznych PAN w ramach projektu badawczego [6].

chloryty [6]. Można się zatem spodziewać, że obliczona porowatość iłów (Kp_{il_lab}) będzie dobrze korelować z całkowitą zawartością minerałów ilastych (V_{il}), (rysunek 3).

Rys. 3. Korelacja porowatości iłów, wyznaczonej na podstawie Qv ($Kp_{il\ lab}$), z zawartością minerałów ilastych (V_{il})

Określenie czasu relaksacji poprzecznej T_{2ił}

Obliczone wielkości porowatości iłów (Kp_{il_lab}) odniesiono do badań NMR. Analizowano krzywe kumulacyjne porowatości z zakresu krótkich cza-

sów relaksacji poprzecznej T_2 . Dla każdej krzywej określono wartość T_{2il} , która odpowiada porowatości Kp_{il} wyznaczonej według zależności 4 (rysunek 4, tablica 3). T_{2il} zmienia się w zakresie od 0,83 do 2,07 ms, a średnia arytmetyczna wynosi 1,53 ms.

Należy zaznaczyć, że w procesie tworzenia krzywych rozkładu czasów relaksacji poprzecznej T_2 (program WinDXP [7]) zadawane wartości T_2 (128 punktów) zmieniają się dyskretnie w zakresie od 0,01 do 1000 ms. Najbliższa wartość T_2 , odpowiadająca wielkości T_{2il} wyznaczonej eksperymentalnie, wynosi 1,49 ms i ją właśnie zastosowano w opisanych poniżej badaniach.

Jak już stwierdzono wcześniej, określenie średniego czasu T_{2il} dla danego zbiornika umożliwia wyznaczenie Kp_{il} z badań NMR dla każdej próbki – bez konieczności wykonywania żmudnych, kosztownych i czasochłonnych pomiarów Qv czy *CEC*. Co więcej, badania NMR mogą być wówczas wykorzystane bezpośrednio do określania wskaźnika wymiany kationowej Qv [8]. Poniżej (tablica 4, rysunek 5) zestawiono porowatość iłów obliczoną dla poszczególnych próbek ze wzoru (4) (Kp_{il_lab}) oraz wyznaczoną z krzywych kumulacyjnych NMR na podstawie T_{2il} – określonych oddzielnie dla każdej próbki (Kp_{il} (T_{2il} różne)) i dla średniej wartości T_{2il} równej 1,49 ms (Kp_{il} (T_{2il} = 1,49 ms)). Porównano również średnie wartości Kp_{il} otrzymane trzema różnymi sposobami (rysunek 6). Analogiczne postępowanie zastosowano w przypadku

Tablica 3. Wartości T_{2il} wyznaczone dla poszczególnych próbek

Numer próbki	1	2	3	4	5	6	7	8	9
T_{2il} [ms]	1,49	1,49	1,20	1,20	1,85	1,08	1,20	2,07	2,07
Numer próbki	10	11	12	13	14	15	16	17	_
T_{2il} [ms]	2,57	1,49	1,34	1,49	1,49	0,86	1,49	1,66	_

Rys. 4. Wyznaczenie T_{2il}: a) krzywe kumulacyjne porowatości dla krótkich czasów relaksacji T₂,
b) krzywe rozkładu porowatości dla całego zakresu T₂. Punkty na krzywych odpowiadają obliczonym wartościom Kp_{il}. Linia przerywana wskazuje średnią arytmetyczną T_{2il} równą 1,53 ms

NAFTA-GAZ

parametru Qv (tablica 5, rysunki 7 i 8). Oba parametry wyznaczone metodą NMR są w dobrej zgodności z para-

metrami określonymi laboratoryjnie na podstawie CEC– co potwierdza zarówno prawidłowe wyznaczenie T_{2il}

Próbka	$K\!p_{il_lab} \ [\%]$	Kp_{il} [%] (T_{2il} = 1,49 ms)	<i>Kp_{il}</i> [%] (różne wartości <i>T</i> _{2<i>il</i>})
1	3,44	3,55	3,55
2	4,39	4,30	4,29
3	4,57	5,25	4,43
4	5,92	7,20	6,17
5	18,13	16,84	18,00
6	2,07	2,56	2,09
7	2,43	2,87	2,50
8	2,18	1,67	2,18
9	2,77	2,12	2,83
10	9,73	7,76	9,67
11	4,91	5,05	5,05
12	9,23	9,80	9,55
13	9,08	8,88	8,88
14	2,13	2,10	2,10
15	3,75	5,22	3,92
16	7,08	6,93	6,92
17	17,83	17,23	17,89

Tablica 4. Zestawienie porowatości iłów, określonych różnymi sposobami

Rys. 5. Korelacje parametrów Kp_{il}, określonych różnymi sposobami

Rys. 6. Średnie wartości parametru *Kp_{il}*, określonego różnymi sposobami

dla poszczególnych próbek, jak i możliwość zastosowania w badaniach NMR średniej wielkości parametru T_{2il} . W dalszej części pracy autorzy rozpatrują porowatość iłów określoną dla średniej wartości parametru T_{2il} .

Próbka	Qv_lab [mval/cm ³]	$Qv [mval/cm3]$ $(T_{2il} = 1,49 ms)$	$Qv [mval/cm^3]$ (różne wartości T_{2il})
1	1,78	1,84	1,84
2	0,56	0,55	0,55
3	0,67	0,77	0,65
4	0,84	1,02	0,87
5	2,91	2,71	2,89
6	0,51	0,64	0,52
7	1,33	1,57	1,37
8	0,27	0,20	0,27
9	0,36	0,27	0,37
10	2,21	1,76	2,19
11	0,83	0,86	0,86
12	1,66	1,76	1,72
13	1,72	1,68	1,68
14	0,28	0,28	0,28
15	1,39	1,93	1,45
16	0,87	0,85	0,85
17	2,90	2,81	2,91

Tablica 5. Zestawienie wartości Qv, określonych różnymi sposobami

Rys. 7. Korelacje parametrów Qv, określonych różnymi sposobami

Rys. 8. Średnie wartości parametru Qv, określonego różnymi sposobami

Określenie zależności umożliwiających wyznaczenie porowatości iłów w profilu otworu wiertniczego

Wyniki pomiarów wykorzystane w procesie tworzenia modeli matematycznych zamieszczono w tablicy 6.

Numer próbki	Кр [%]	Кр _{еf} [%]	Kp _{il} [%]	V _{il} [%]	<i>Kp_{rz}</i> [mD]
1	6,22	2,67	3,55	12	0,04
2	25,05	20,75	4,30	13	85,91
3	21,83	16,58	5,25	17	16,47
4	22,76	15,56	7,20	14	12,36
5	20,01	3,17	16,84	45	0,00
6	12,93	10,37	2,56	8	10,39
7	5,86	2,99	2,87	6	0,01
8	26,35	24,68	1,67	4	458,45
9	24,91	22,79	2,12	7	204,50
10	14,17	6,41	7,76	24	1,55
11	18,97	13,92	5,05	10	28,83
12	17,9	8,10	9,80	29	0,67
13	17,01	8,13	8,88	17	0,55
14	24,43	22,33	2,10	3	153,02
15	8,68	3,46	5,22	13	0,03
16	26,30	19,37	6,93	19	3,79
17	19,74	2,51	17,23	36	0,00

Tablica 6. Wyniki pomiarów wykorzystane w tworzeniu modeli matematycznych

Do opracowania modeli matematycznych umożliwiających obliczanie współczynnika porowatości iłów (Kp_{il}) zastosowano estymację nieliniową. W obliczeniach wykorzystano następujące parametry skał:

- *Kp* porowatość całkowita [metoda NMR], w ułamku jedności,
- Kp_{ef} porowatość efektywna [metoda NMR], w ułamku jedności,
- V_{il} zawartość minerałów ilastych [analiza rentgenowska], w ułamku jedności.

W oparciu o wyżej wymienione parametry skonstruowano następujące modele teoretyczne:

$$Kp_{il} = V_{il}^{a} \times (1 - Kp)^{b}$$
⁽⁵⁾

$$Kp_{il} = V_{il}^{a} \times (1 - Kp)^{b} \times Kp^{c}$$
(6)

$$Kp_{il} = V_{il}^{a} \times (1 - Kp_{el})^{b}$$
⁽⁷⁾

$$Kp_{il} = V_{il}^{a} \times (1 - Kp_{ef})^{b} \times Kp_{ef}^{c} \qquad (8)$$

gdzie: a, b, c – współczynniki regresji, które należy wyznaczyć. Wartości współczynników estymacji nieliniowej i korelacji (*R*) dla zaproponowanych modeli matematycznych zestawiono w tablicy 7.

Modele matematyczne przyjmują zatem postać:

$$Kp_{il} = V_{il}^{1,27} \times (1 - Kp)^{2,83}$$
(9)

$$Kp_{il} = V_{il}^{0.97} \times (1 - Kp)^{1.52} \times Kp^{0.39}$$
(10)

$$Kp_{il} = V_{il}^{1,70} \times (1 - Kp_{ef})^2$$
(11)

$$Kp_{il} = V_{il}^{0.98} \times (1 - Kp_{ef})^{3.47} \times Kp_{ef}^{0.20}$$
(12)

Na rysunkach 9–12 przedstawiono korelacje wielkości porowatości iłów Kp_{ii} przewidywanych – względem obserwowanych, dla opracowanych modeli matematycznych.

Podjęto również próbę określenia modelu uwzględniającego wpływ porowatości iłów na wielkość przepuszczalności badanych skał, stosując następujące zależności:

$$Kprz = a \times Kp^{b} \times (1 - Kp_{il})^{2}$$
(13)

$$Kprz = a \times Kpef^{b} \times (1 - Kp_{il})^{2}$$
(14)

gdzie:

Kprz-przepuszczalność [mD],

- *Kp* porowatość całkowita [metoda NMR], w ułamku jedności,
- *Kp_{ef}* porowatość efektywna [metoda NMR], w ułamku jedności,
- Kp_{il} porowatość iłów, w ułamku jedności,

gdzie: a, b, c – współczynniki regresji, które należy wyznaczyć.

W tablicy 8 zestawiono wartości współczynników estymacji nieliniowej i korelacji dla skonstruowanych modeli.

Przykłady korelacji wartości przepuszczalności Kp_{rz} – przewidywanych względem obserwowanych, dla teoretycznych modeli przedstawionych w tablicy 7 – zaprezentowano na rysunkach 13 i 14.

Tablica 7. Parametry modeli do określania porowatości iłów (Kp_{il})

Lp.	Model	a	b	с	R^*
1.	$Kp_{il} = V_{il}^{a} \times (1 - Kp)^{b}$	1,27	2,83	-	0,91
2.	$Kp_{il} = V_{il}^{a} \times (1 - Kp)^{b} \times Kp^{c}$	0,96	1,52	0,39	0,94
3.	$Kp_{il} = V_{il}^{a} \times (1 - Kp_{ef})^{b}$	1,70	2,0	_	0,76
4.	$Kp_{il} = V_{il}^{a} \times (1 - Kp_{ef})^{b} \times Kp_{ef}^{c}$	0,98	3,47	0,20	0,94

*Gdzie: R – współczynnik korelacji.

Rys. 11. Wartości parametrów Kp_{il} przewidywanych, względem obserwowanych (model: $Kp_{il} = V_{il}^{1,70} \times (1 - Kp_{el})^2$)

Rys. 13. Wartości współczynników przepuszczalności Kp_{rz} przewidywanych, względem obserwowanych (model: $Kprz = 1202578 \times Kp_{ef}^{6,0} \times (1 - Kp_{ii})^2$)

Rys. 10. Wartości parametrów Kp_{il} przewidywanych, względem obserwowanych (model: $Kp_{il} = V_{il}^{0.97} \times (1 - Kp)^{1.52} \times Kp^{0.39}$)

Rys. 12. Wartości parametrów Kp_{il} przewidywanych, względem obserwowanych (model: $Kp_{il} = V_{il}^{0.98} \times (1 - Kp_{ef})^{3.47} \times Kp_{ef}^{0.20}$)

Rys. 13. Wartości współczynników przepuszczalności Kp_{rz} przewidywanych, względem obserwowanych (model: $Kprz = 1202578 \times Kp_{ef}^{6.0} \times (1 - Kp_{il})^2$)

Lp.	Model	а	b	R
1.	$Kprz = a \times Kp^b \times (1 - Kp_{il})^2$	1 018 637	6,0	0,86
2.	$Kprz = a \times Kp_{ef}^{b} \times (1 - Kp_{il})^{2}$	1 202 578	6,0	0,96

Tablica 8. Parametry modeli matematycznych do określania przepuszczalności *Kp*_{rz}

Próba określenia porowatości iłów w profilu otworu Palikówka-3

Do określenia porowatości iłów wybrano otwór Palikówka-3. Najlepsze wyniki uzyskano po zastosowaniu modelu: $Kp_{il} = V_{il}^{0.98} \times (1 - Kp_{ef}^{3.47}) \times Kp_{ef}^{0.20}$.

Wykorzystując wygenerowane profilowanie porowatości iłów, obliczono współczynnik przepuszczalności Kp_{rz} (model: $Kprz = 1202578 \times Kp_{ef}^{6,0} \times (1 - Kp_{il})^2$; R = 0,97).

Zastosowanie porowatości efektywnej w powyższych zależnościach wiąże się z tym, że w procesie interpretacji profilowań otworowych wielkość porowatości obliczana metodą *cross-plotu* z udziałem krzywej neutronowej daje (w przypadku skał zasilonych) porowatość zbliżoną do *Kp*_{ef} wyznaczonej metodą NMR [6]. Wyniki obliczeń z interwału 1340–1430 m przedstawiono na rysunku 15.

W kolejnych kolumnach, od lewej ku prawej, zamieszczono:

- głębokość,
- objętościowy skład litologiczny: zailenie, piaskowce, porowatość,
- porowatość całkowitą i porowatość iłów,
- przepuszczalność; wyliczoną jako funkcję *Kp_{it}* oraz wyznaczoną laboratoryjnie.

Różnice występujące pomiędzy przepuszczalnością obliczoną na podstawie wyznaczonego modelu matematycznego i przepuszczalnością wyznaczoną laboratoryjnie (rysunek 15) związane są najprawdopodobniej z tym, że profilowania geofizyczne odzwierciedlają uśrednione wartości z określonej objętości ośrodka skalnego. Badania laboratoryjne natomiast prowadzone są na materiale rdzeniowym i muszą być traktowane jako pomiary punktowe. Ponadto, dokładne wyznaczenie przepuszczalności wymaga uwzględnienia wody nieredukowalnej, która – oprócz wody związanej w iłach – zawiera także wodę zatrzymaną siłami kapilarnymi. Zastosowana zależność (wzór 14) miała przede wszystkim pomóc zweryfikować wygenerowaną wielkość porowatości iłów w profilu otworu wiertniczego. Woda związana w iłach niewątpliwie wpływa na wielkość przepuszczalności skał,

dlatego można się spodziewać (szczególnie w przypadku skał mioceńskich, w których własności filtracyjne zależą w dużym stopniu od wielkości zailenia – a zatem od wielkości porowatości iłów), że zastosowany model będzie odzwierciedlać zmienność przepuszczalności w profilu otworu wiertniczego. Potwierdzają to wyniki interpretacji profilowań geofizycznych z interwału 1469–1493 m (rysunek 16). Widoczna jest duża zbieżność pomiędzy współczynnikami przepuszczalności *Kprz*1; wyznaczonymi standardowo z profilowań geofizycznych, i w oparciu o model wykorzystujący profilowanie porowatości iłów. Uzyskany trend zmienności współczynnika przepuszczalności *Kprz* = $f(Kp_{il})$ jest zgodny z wynikami standardowej interpretacji geofizyki otworowej.

Rys. 16. Wyniki analizy porowatości i przepuszczalności w otworze Palikówka-3, w interwale głębokościowym 1469–1493 m

Podsumowanie i wnioski

Zasadniczym wynikiem pracy jest zastosowanie i sprawdzenie metody wyznaczania wielkości przestrzeni porowej wypełnionej wodą związaną w iłach z wykorzystaniem pomiarów NMR – na przykładzie piaskowców mioceńskich z rejonu Palikówka. Szczególnie cenna jest możliwość wyznaczenia na podstawie metody NMR parametru Qv, gdyż w porównaniu z innymi badaniami laboratoryjnymi jest ona prostsza, mniej kosztowna i szybsza, a ponadto uwzględnia rozkład minerałów ilastych w przestrzeni porowej i nie ma

NAFTA-GAZ

ograniczeń związanych z niską przepuszczalnością skał. Średnia wartość parametru T_{2il} powinna być wyznaczana oddzielnie dla każdego basenu, a jeżeli to możliwe – dla każdej facji.

Opracowane modele matematyczne do określenia porowatości iłów w profilu otworów wiertniczych przetestowano na danych z profilowań w otworze Palikówka-3, uzyskując zadowalające rezultaty. Wygenerowane profilowanie porowatości iłów daje możliwość wyznaczenia w profilu otworu wielkości wskaźnika wymiany kationowej *Qv*, który jest ważnym parametrem modeli Waxmana-Smitsa i *Dual Water* – wykorzystywanych w procesie interpretacji profilowań geofizycznych do określenia nasycenia.

Przeprowadzone badania są badaniami testowymi. Uzyskane wyniki zachęcają do dalszych prac; w szczególności do wyznaczenia parametru *Qv* w profilu otworu i zastosowania go w kompleksowej interpretacji danych z profilowań, pod kątem oceny nasycenia badanych skał.

Artykuł nadesłano do Redakcji 15.10.2009 r. Przyjęto do druku 18.12.2009 r.

Literatura

- de Waal J.A.: *The influence of clay distribution on shaly* sand conductivity. 62nd Annual Technical Conference and Exhibition of Society of Petroleum Engineers, paper SPE 16786, 1987.
- [2] Eslinger E., Pevear D.: Clay Minerale for Petroleum Geologists and Engineers. SEPM Short Course Notes No. 22, Society of Economic Paleontologists and Mineralogists, Tulsa, 1988.
- [3] Freedman R., Boyd A., Gubelin G., McKeon D., Morriss C.E., Flaum C.: *Measurement of total NMR porosity adds new value to NMR logging*. SPWLA 38th Annual Logging Symposium, June 15-18, 1997, paper OO.
- [4] Hill H.J., Shirley O.J., Klein G.E.: Bound water in shaly sands – its relation to Qv and other formation properties. The Log Analyst, May-June, 1979.
- [5] Juhasz I.: The central role of Qv and formation-water sainity in the evaluation of shaly formations. SPWLA 20th Annual Logging Symposium. June 3-6, 1979, paper A.

Recenzent: prof. dr hab. inż. Andrzej Kostecki

- [6] Klaja J., Gąsior I., Kowalska S., Przelaskowska A.: Zastosowanie metody magnetycznego rezonansu jądrowego (NMR) do oceny nasycenia wodą nieredukowalną mioceńskich skał zbiornikowych w profilu otworów wiertniczych przedgórza Karpat. Projekt badawczy Nr 4 T12B 013 29, 2008.
- [7] Klaja J., Gąsior I.: Opracowanie metodyki szacowania niepewności pomiarów wykonywanych metodą magnetycznego rezonansu jądrowego (NMR). Dokumentacja INiG, zlec. wew. 13/SW, 2007.
- [8] Martin P., Dacy J.: Effective Qv by NMR core tests. SPWLA 45th Annual Logging Symposium, June 6-9, 2004.
- [9] Straley C., Rossini D., Vinegar H., Tutunjian P., Morriss C.: Core analysis by low field NMR. The Log Analyst, March-April, 1997.
- [10] The Schlumberger Oilfield Glossary, http://www.glossary. olfield.sib.com

Mgr inż. Jolanta KLAJA – ukończyła studia na wydziale Geologiczno-Poszukiwawczym Akademii Górniczo-Hutniczej w zakresie górnictwa i geologii, specjalność – geofizyka stosowana. W Instytucie Nafty i Gazu w Krakowie zajmuje się badaniem własności petrofizycznych skał metodami laboratoryjnymi, w szczególności metodą magnetycznego rezonansu jądrowego (NMR).

Mgr Irena GĄSIOR – absolwentka Wydziału Matematyki UJ. Zajmuje się opracowywaniem nowych metodyk pomiarowo-interpretacyjnych profilowań geofizyki wiertniczej. Jest autorką m.in. programów komputerowych do interpretacji profilowań geofizyki wiertniczej oraz oprogramowania dla geofizycznego systemu GEOBAZA i GEOBANK. Współautorka systemu GeoWin.