Jolanta Klaja Instytut Nafty i Gazu, Kraków

Piotr Kulinowski Instytut Techniki, Akademia Pedagogiczna, Kraków

Wykorzystanie zjawiska samodyfuzji do badania przestrzeni porowej piaskowców metodą magnetycznego rezonansu jądrowego

W pracy przedstawiono sekwencję pomiarową umożliwiającą badanie zjawiska samodyfuzji protonów w przestrzeni porowej piaskowców. Pomiar ten wykonywany jest przy użyciu gradientu pola magnetycznego, który pozwala zaobserwować wpływ rozmiaru porów na współczynnik samodyfuzji. Badania zrealizowano dla sześciu próbek skał o zróżnicowanej budowie przestrzeni porowej, wykorzystując w tym celu relaksometr Maran 7 firmy Resonance (częstotliwość rezonansowa precesji protonów 7,9 MHz). Uzyskane wyniki potwierdziły możliwość wykonywania tego typu pomiarów na posiadanym sprzęcie. Pozwalają one wyznaczyć wielkość stosunku objętości do powierzchni porów, a także – w powiązaniu z pomiarem czasów relaksacji poprzecznej T_2 – wielkość relaksacyjności powierzchniowej. Wyznaczone parametry wykorzystano w procesie normalizacji rozkładów T_2 do rozkładów wielkości porów. Uzyskane rezultaty odniesiono do wyników badań wykonanych na porozymetrze rtęciowym.

Self-diffusion sensitive pulse field gradient Magnetic Resonanse methods as a tool for probing the pore space of the sandstones

1H time-dependent self-diffusion coefficients as measured by means of pulse field gradient magnetic resonance allow to obtain surface-to-volume ratio (S/V) of the pores in brine saturated rock samples. S/V ratio enables to asses surface relaxivity and consequently to scale T_2 distributions in pore size, assuming cylindrical model of pores. Six sandstone samples with different pore structure were measured using MARAN 7 (Resonance Instruments, Great Britain) NMR console operating at 0.186T (probe tuned at 7.9 MHz for 1H). Scaled T_2 distributions were compared with mercury porosimetry.

Wstęp

Pomiary NMR wykonywane na próbkach skał nasyconych jednorodnym płynem dostarczają informacji o strukturze porowej skał. Czas relaksacji poprzecznej T_2 jest proporcionalny do wielkości porów [3]. Szybkie tempo zaniku składowej poprzecznej magnetyzacji, a więc krótki czas T_2 , związany jest z małymi porami, podczas gdy pory większe charakteryzuje dłuższy czas relaksacji T_2 (rysunek 1). Rozkład czasów T_2 odzwierciedla zatem rozkład wielkości porów. Jest to informacja jakościowa, na podstawie której można stwierdzić, że przykładowo: w skale dominują pory duże (przewaga długich czasów relaksacji w rozkładzie T_2 , rysunek 2a), czy małe (przewaga krótkich czasów relaksacji w rozkładzie T_2 , rysunek 2b) lub występuje szerokie spektrum wielkości porów (rysunek 2c). Ilościowe określenie wielkości porów na podstawie standardowych pomiarów NMR (sekwencja CPMG) wymaga odniesienia rozkładów T_2 do wyników badań, w których rozmiar porów wyznacza się w sposób

Rys. 1. Czas relaksacji poprzecznej T_2 , a rozmiar porów

bezpośredni. Najczęściej stosuje się korelację rozkładów T_2 z rozkładem wielkości porów otrzymanym z porozymetrii rtęciowej [6]. W przypadku porozymetrii rtęciowej uzyskany rozkład związany jest z wielkością gardzieli łączących

Zjawisko dyfuzji protonów w jednorodnym płynie wypełniającym por można wyrazić równaniem [7]:

$$\frac{D(t_{obs})}{D_0} \approx 1 \frac{4}{9\sqrt{\pi}} \sqrt{D_0 t_{obs}} \frac{S}{V}$$
(1)

gdzie:

D(t) [mm²/s] – współczynnik samodyfuzji, zależny od czasu,
 D₀ [mm²/s] – współczynnik samodyfuzji dyfuzji objętości osciowej (samodyfuzja w objętości płynu, nieograniczona),

 t_{obs} [s] – czas obserwacji,

 $S[m^2]$ – powierzchnia poru,

 $V[m^3]$ – objętość poru.

Zależność ta zachodzi dla krótkich czasów obserwacji. Wówczas zmiana wielkości współczynnika samodyfuzji

artykuły

pory, co sprawia, że rozkłady te przedstawiają nieco inne właściwości skał. Różnica pomiędzy nimi polega na tym, że NMR rejestruje sygnał z całej objętości poru, a porozymetria rtęciowa odzwierciedla objętość porów dostępną przez gardziele o danej wielkości [1]. Oba pomiary dostarczają porównywalnych informacji tylko wówczas, gdy nie ma różnic między rozmiarem porów i gardzieli lub kiedy istnieje stały związek pomiędzy ich rozmiarami. Z taką sytuacją mamy do czynienia najczęściej w piaskowcach, w których promień ziarna determinuje rozmiar poru [5]. W większości typów piaskowców budowa przestrzeni porowej jest bardziej skomplikowana. Spowodowane jest to np. obecnością cementów, zaileniem, rozpuszczaniem skaleni i innymi procesami diagenetycznymi, które mogą być przyczyną braku korelacji wielkości porów z rozmiarem gardzieli. Ominięcie warunku stałego związku pomiędzy wielkością poru i gardzieli umożliwia metoda, w której rozmiar porów wyznacza się wyłącznie na podstawie badań NMR [8]. W metodzie tej, oprócz pomiaru czasu T_2 (sekwencja CPMG), wykorzystuje się pomiar samodyfuzji wykonany przy użyciu gradientu pola magnetycznego, który pozwala zaobserwować wpływ rozmiaru porów na współczynnik samodyfuzji D (samodyfuzja – niewymuszony ruch cieplny molekuł wody*).

Praca miała na celu uruchomienie sekwencji pomiarowej umożliwiającej badanie zjawiska dyfuzji protonów w przestrzeni porowej piaskowców oraz przetestowanie procedury wyznaczania rozmiarów porów skał na podstawie pomiarów NMR. Uzyskane wyniki porównano z wynikami badań wykonanymi na porozymetrze rtęciowym.

Podstawy teoretyczne

cząstek wody wypełniającej por, w porównaniu z wielkością współczynnika samodyfuzji objętościowej, jest zależna jedynie od stosunku powierzchni poru do jego objętości *S/V*. Dla ośrodka porowego, jakim jest skała, należy założyć, że promień porów zmienia się w dużym zakresie. Jeżeli ξ_i jest cząstkową objętością porów o stosunku powierzchni poru do objętości *S/V_i*, wówczas równanie 1 przyjmuje postać [8]:

$$\sum_{i=1}^{n} \xi_{i} \frac{D_{i}}{D_{0}} \approx \sum_{i=1}^{n} \xi_{i} \left[1 - \frac{4}{9\sqrt{\pi}} \sqrt{D_{0}t} \left(\frac{S}{V} \right)_{i} \right] = \left(1 - \frac{4}{9\sqrt{\pi}} \sqrt{D_{0}t} \left(\frac{S}{V} \right) \right) (2)$$

Pomiary współczynnika samodyfuzji w zależności od czasu obserwacji – w połączeniu z liniowym dopasowaniem

^{*}w pracy dla zjawiska samodyfuzji stosowano zamiennie termin "dyfuzja"

NAFTA-GAZ

danych pomiarowych względem pierwiastka kwadratowego czasu obserwacji – pozwalają wyznaczyć średnią wartość stosunku powierzchni poru do jego objętości $\overline{(S/V)}$. Możliwość tę wykorzystano w metodzie szacowania wielkości porów na podstawie pomiarów NMR. Metoda wiąże ze sobą wyniki dwóch pomiarów:

- pomiaru współczynnika samodyfuzji w reżimie krótkich czasów obserwacji,
- pomiaru rozkładu czasów relaksacji poprzecznej T₂.

Dla skały w pełni nasyconej solanką zachodzi prosta relacja pomiędzy mierzoną wielkością czasu relaksacji poprzecznej T_2 i rozmiarem poru:

$$T_2 \approx \frac{V}{S\rho} \tag{3}$$

gdzie: ρ [µm/s] – relaksacyjność powierzchniowa.

Zależność ta wskazuje, że stosunek powierzchni poru do jego objętości jest związany z relaksacyjnością powierzchniową ρ . Zakładając, że równanie 3 jest wiarygodne dla każdej wielkości poru oraz przyjmując, podobnie jak w równaniu 2, że dla ośrodka porowego ξ_i jest cząstkową objętością porów o stosunku powierzchni do objętości S/V_i i czasie relaksacji T_{2i} , zależność 3 przyjmuje postać:

$$\sum_{i=1}^{n} \xi_{i} \frac{1}{T_{2i}} = \sum_{i=1}^{n} \xi_{i} \rho_{i} \left(\frac{S}{V}\right)_{i} \approx \rho \sum_{i=1}^{n} \xi_{i} \left(\frac{S}{V}\right)_{i} = \rho \overline{\left(\frac{S}{V}\right)}$$
(4)

gdzie: n – ilość wydzielonych rozmiarów porów.

Lewa strona powyższego równania jest średnią ważoną $\overline{1/T_2}$ rozkładu T_2 , otrzymanego z pomiaru tempa zaniku poprzecznej składowej magnetyzacji za pomocą jednowymiarowej odwrotnej transformacji Laplace'a danych pomiarowych z eksperymentu CPMG. Znając średnią wartość $\overline{(S/V)}$ z pomiaru dyfuzji (wzór 2), można wyznaczyć wielkość relaksacji powierzchniowej ρ . Ostatecznie rozkład T_2 może być przekształcony do rozkładu rozmiaru poru (*V/S*) za pomocą zależności 3. Poniżej przedstawiono procedurę otrzymywania rozkładu porów:

- Wyznaczenie średniej wartości (S/V) poprzez dopasowanie równania 5 do serii pomiarów dyfuzji wykonanych w zakresie krótkich czasów obserwacji.
- 2. Wyznaczenie relaksacyjności poprzecznej ρ poprzez powiązanie średniej wartości $\overline{(S/V)}$ ze średnią wartością $\overline{1/T_2}$ zgodnie ze wzorem 4:

$$\overline{\left(\frac{1}{T_2}\right)} \approx \rho \overline{\left(\frac{S}{V}\right)} \implies \rho = \overline{\left(\frac{1}{T_2}\right)} \times \overline{\left(\frac{S}{V}\right)^{-1}}$$
(5)

 Normalizacja rozkładu T₂ do rozmiaru porów, wyrażonego za pomocą stosunku objętości poru V do jego powierzchni S (V/S [μm]).

Porównanie wprost dwóch eksperymentów: dyfuzji i CPMG, jest możliwe pod warunkiem, że parametr τ (czas pomiędzy impulsem $\pi/2$ i π) będzie taki sam dla obu sekwencji pomiarowych. Spełnienie takiego warunku stwarza jednak pewne problemy. W sekwencji pomiarowej CPMG (rysunek 3) wielkość parametru τ winna być jak najmniejsza. Pozwala to z jednej strony zarejestrować wkład komponentów o krótkich czasach T_2 , z drugiej zaś, mała wartość τ minimalizuje niekorzystny wpływ dyfuzji na pomiar T_2 . Najmniejsza wartość τ w eksperymencie CPMG dla relaksometru Maran 7, wykorzystywanego w Instytucie Nafty i Gazu, wynosi 0,1 ms. W sekwencji pomiarowej, wykorzystywanej do określania samodyfuzji ograniczonej wielkością poru, przyjęto parametr τ równy 2 ms. W przypadku pomiarów próbek, dla których mierzony sygnał zawiera komponenty o czasach T_2 równych lub mniejszych od 2 ms, przyjęcie parametru τ równego 2 ms spowoduje, że zmierzone amplitudy będą mniejsze niż w rzeczywistości lub w ogóle nie zostaną zarejestrowane (niedoszacowanie tej części rozkładu).

W pracy zastosowano metodę pozwalającą odzyskać pierwotnie utraconą informację (przy $\tau = 2$ ms). Metoda bazuje na założeniu, że powierzchnia rozkładu $T_{2, \tau=2 \text{ ms}}$ odpowiada części rozkładu $T_{2, \tau=0,1 \text{ ms}}$ na prawo od punktu T_{2j} (rysunek 4). Wartość $\overline{1/T_2}$ dla $\tau = 2$ ms można zastąpić przez wartość $\overline{1/T_2}$ dla $\tau = 0,1$ ms (wzory 6 i 7):

$$\left(\frac{1}{T_2}\right)_{r=2ms} \approx \rho_{r=2ms} \overline{\left(\frac{S}{V}\right)} \quad \text{oraz} \quad \sum_{i=j}^n \xi_i \frac{1}{T_2} \approx \rho_{r=0,1ms} \overline{\left(\frac{S}{V}\right)} \quad (6)$$
$$\Rightarrow \quad \rho_{r=0,1ms} = \frac{\sum_{i=j}^n \xi_i \frac{1}{T_2}}{\overline{\left(\frac{1}{T_2}\right)_{r=0,1ms}}} \rho_{r=2ms} \quad (7)$$

Do wykonania pomiarów współczynnika samodyfuzji D użyto sekwencji pomiarowej z gradientami bipolarny-

Rys. 3. Sekwencja pomiarowa CPMG

Rys. 4. Przykład rozkładów T_2 dla $\tau = 0,1$ ms i $\tau = 2$ ms

mi, zaproponowanej przez Cotts'a [2], która spotykana jest w literaturze w różnych odmianach. Wybrano wersję z symetrycznymi gradientami. Sekwencja przedstawiona jest na rysunku 5. Parametry sekwencji:

 $\tau = 2$ ms, $\delta = 1$ ms, $\delta 1 = \delta 2 = 500$ µs, RD = 5 s

Pomiar współczynnika *D* dla ustalonego czasu obserwacji t_{obs} był wykonywany poprzez kolejne uruchomienia sekwencji pomiarowej z różnymi wartościami gradientu (g_i zmieniano od 0-0,54 [T/m]). Tłumienie sygnału NMR wyraża się następującą zależnością:

$$\frac{S(g_i)}{S(g=0)} = e^{-\gamma^2 D\left(\frac{\Delta i \cdot \frac{3\tau}{2} \cdot \delta}{2}\right)g_i^2}$$
(8)

Dopasowując dane pomiarowe według powyższego równania otrzymujemy wartość współczynnika *D*. Pomiary

współczynnika *D* wykonywano dla szerokiego zakresu czasów obserwacji t_{obs} (parametr sekwencji pomiarowej Δ zmieniano od 3-4 do 60 ms, a w niektórych przypadkach nawet do 200 ms). Punkty pomiarowe do regresji liniowej $D(\sqrt{t_{obs}})$ były dobierane tak, by znajdowały się na liniowym odcinku krzywej tłumienia sygnału NMR; czyli były tak dobrane, by znajdować się w tzw. reżimie krótkich czasów obserwacji. Zastosowano dopasowanie z nałożeniem więzów (współczynnik samodyfuzji objętościowej D_0 dla solanki 50 g/l). W celu pozbycia się niepożądanych ech, w rejestrowanym sygnale użyto odpowiedniego cyklu fazowego według Sun et al. [9] (cykliczne zmiany faz impulsów radiowej częstotliwości oraz fazy odbiornika). Cykl składa się z ośmiu kroków, według tablicy 1:

Tablica 1. Cykl fazowy zastosowany w sekwencji pomiarowej

Lp.	$\pi/2$	π	π/2	π/2	π	Odbiornik
1.	+x	+y	+x	+x	+y	+x
Ž.	$+\mathbf{\hat{x}}$	+y	-x	+x	+y	—x
3.	+x.	+y	+x	-x	+y	-x
4.	+x	+y	-x	-x	+y	+x
5.	+x	+y	+y	+y	+y	+x
6.	$+\mathbf{x}$	+y	-y	+y	+y	—X
7.	$+\mathbf{x}$	+y	+y	-y	+y	-x
8.	+x	+y	-y	-y	+y	+x

Program *diffbplr* do pomiaru współczynnika *D* został napisany w języku Pascal i zaimplementowany na systemie MARAN.

Rys. 5. 13-segmentowa sekwencja pomiarowa PGSE oparta na echu stymulowanym; $\pi/2$, π – impulsy radiowej częstości, g_i – amplituda impulsu gradientowego (zacieniowany szarym kolorem), δ – czas trwania impulsu gradientowego

Wykonane badania

Pomiary metodą magnetycznego rezonansu jądrowego wykonano dla sześciu próbek piaskowców, nasyconych solanką o stężeniu 50 g/l. Cztery z nich to piaskowce szydłowieckie, a pozostałe – piaskowce mioceńskie. Badania wykonano na relaksometrze Maran 7 firmy Resonance, w którym wykorzystuje się pole magnetyczne o natężeniu 0,186 – tesli co odpowiada częstotliwości precesji protonów 7,9 MHz. Skały badano w temperaturze 26°C. Współczynnik dyfuzji objętościowej solanki wykorzystanej do nasycenia skał wynosi 2,32E-03 [4]. Celem badań było

NAFTA-GAZ

zastosowanie opisanych powyżej sekwencji pomiarowych (patrz. podstawy teoretyczne) do określenia rozmiarów porów wytypowanych próbek piaskowców. Otrzymane wyniki odniesiono do rozkładów porów wyznaczonych na podstawie porozymetrii rtęciowej.

W badaniach NMR przyjęto sposób postępowania zgodnie z przedstawioną procedurą. Pomiar współczynnika samodyfuzji D wykonano w zakresie czasów od 3 ms do 14 ms. Dla wszystkich piaskowców otrzymane zależności współczynnika D od t_{obs} są poprawne. Świadczą o tym wysokie współczynniki korelacji danych (R^2 powyżej 0,9) i bardzo mały rozrzut uzyskanych punktów pomiarowych (rysunek 6). Wykonany eksperyment pozwolił wyznaczyć średnią wartość V/S badanych piaskowców. Obliczone pa-

w kierunku mniejszych rozmiarów porów. Najlepsze dopasowanie krzywych (porozymetrycznej i NMR) otrzymano dla próbki numer 1. Piaskowiec ten charakteryzuje się dużą jednorodnością, wysoką porowatością (23%) i przepuszczalnością (1430 mD). Zarówno krzywa porozymetryczna, jak i rozkład czasów relaksacji poprzecznej T_2 mają charakter jednomodalny (rysunek 7) – piaskowiec posiada jeden zasadniczy rozmiar porów (ok. 20 µm). Obserwacje w mikroskopie skaningowym (rysunek 8) świadczą o nieskomplikowanej budowie przestrzeni porowej. Jest to piaskowiec dobrze wysortowany, słabo zwięzły, o kwarcowym szkielecie ziarnowym i znikomej zawartości minerałów ilastych. Budowa przestrzeni porowej pozostałych piaskowców jest bardziej złożona. Świadczy o tym szeroki

Rys. 6. Przykłady pomiarów współczynnika samodyfuzji w zakresie krótkich czasów obserwacji dla badanych piaskowców

rametry, wykorzystywane w metodzie wyznaczania wielkości porów na podstawie pomiarów NMR, zamieszczono w tablicy 2. Rozkłady T_2 , znormalizowane do wielkości porów wyrażonej w jednostce długości *V/S*, przedstawiono na rysunku 7. Uzyskane rozkłady zestawiono z rozkładem porów określonym na podstawie porozymetrii rtęciowej (rysunek 8). Zgodnie z przyjętym w metodzie porozymetrii rtęciowej modelem cylindrycznych kapilar, przed złożeniem krzywych w rozkładzie NMR, wartości *V/S* pomnożono przez 2.

Dla wszystkich próbek krzywe porozymetryczne są przesunięte względem krzywych NMR

 Tablica 2. Parametry obliczone celem wyznaczenia rozmiarów porów badanych skał metodą NMR

Numer próbki	$\overline{(S/V)}$ [μm^{-1}]	$\overline{(1/T_2)}_{\tau=2 \text{ os}}$ dla $T_{2\tau=1\dots n}$ [ms ⁻¹]	$ \frac{\overline{(1/T_2)}_{r=0,1\mathrm{ms}}}{\mathrm{dla}\mathrm{T}_{2i=I_{\mathrm{ms}},y}} \\ \mathrm{[ms]}^{4} $	ρ _{τ=2 ms} [μm/ms]	ρ _{τ = 0,1 ms} [μm/ms]
		piaskowce	szydłowieckie		
1,	2,82E-1	0,0126	0,0030	0,0447	0,0105
2.	2,51E-1	0,0373	0,0165	0,1487	0,0658
3.	2,52E-1	0,0345	0,0145	0,1369	0,0575
4.	2,62E-1	0,0848	0,0232	0,1848	0,0886
1.1		piaskowc	e mioceńskie		
5.	3,15E-1	0,0789	0,0139	0,2529	0,0441
6,	3,89E-1	0,1269	0,0260	0,3262	0,0668

artykuły

Rys. 7. Rozkład wielkości porów piaskowców, wyrażony za pomocą stosunku objętości do powierzchni porów [V/S].

zakres rozmiarów porów oraz najczęściej dwumodalny charakter krzywych – NMR i porozymetrycznej. Można tutaj zauważyć większe rozejście się porównywanych krzywych, jak również różnice w ich kształtach. Krzywe porozymetryczne są z reguły dużo węższe. Nieco wyższy promień porów oraz szerszy rozkład krzywej NMR wynika prawdopodobnie z podstawowych różnic w technice pomiarów NMR i porozymetrii rtęciowej. W porozymetrii

Rys. 9. Obserwacje w mikroskopie skaningowym – piaskowiec szydłowiecki biały: dobrze wysortowany i dobrze przemyty (znikoma zawartość minerałów ilastych), słabo zwięzły, szkielet ziarnowy kwarcowy, ziarna detrytyczne pokryte regeneracyjnym cementem kwarcowym

Rys. 8. Porównanie wyników z porozymetrii rtęciowej i NMR dla badanych piaskowców. Wielkość porów wyrażona jako promień poru – $r [\mu m]$ (model cylindryczny)

rtęciowej pomiar polega na wstrzykiwaniu rtęci do badanej próbki pod zadawanym (kolejno) coraz wyższym ciśnieniem oraz mierzeniu ciśnienia i objętości rtęci, która weszła do próbki pod danym ciśnieniem. Rozmiar porów jest obliczany z zależności pomiędzy ciśnieniem kapilarnym i promieniem porów (równanie Washborn'a):

$$r = \frac{2\tau \times \cos\theta}{P} \tag{9}$$

gdzie:

r – promień porów,

- P przyłożone ciśnienie,
- Θ kąt kontaktu skała-płyn,

 τ – napięcie powierzchniowe.

Podczas gdy pomiar NMR rejestruje sygnał pochodzący z całej objętości porów, porozymetria rtęciowa odzwierciedla objętość porów dostępną przez gardziele o danej wielkości [1], przez co przejawia tendencję do zaniżania rozmiaru większych porów. Dzieje się tak dlatego, że objętości dużych porów nie są osiągane w odpowiednim ciśnieniu, z powodu efektu gardzieli. Wynikiem tego zjawiska jest wąski rozkład rozmiarów porów, przesunięty w kierunku porów mniejszych [8]. Lepsze dopasowanie krzywych dla piaskowca szydłowieckiego białego, w porównaniu z pozostałymi próbkami, wiąże się prawdopodobnie z bardzo dobrymi właściwościami zbiornikowymi i filtracyjnymi próbki 1 – co sprzyja swobodnemu przepływowi zatłaczanej rtęci.

Podsumowanie i wnioski

Zasadniczym wynikiem pracy było uruchomienie procedury wykonywania pomiarów dyfuzji ograniczonej w przestrzeni porowej skał. Obejmowało to sprawdzenie możliwości wykonywania tego typu pomiarów na posiadanym sprzęcie oraz napisanie i zaimplementowanie programu sekwencji pomiarowej w systemie MARAN.

Rezultatem jest uzyskanie zależności D od t_{obs} , która pozwala na wyznaczenie stosunku objętości do powierzchni porów (parametr V/S). W konsekwencji, w połączeniu z wynikiem pomiaru czasów relaksacji poprzecznej T_2 , możemy wyznaczyć wielkość relaksacyjności powierzchniowej (parametr ρ).

Ostatecznym rezultatem jest możliwość wyskalowania rozkładu czasów T_2 w jednostkach odzwierciedlających

Literatura

- Coates G., Xiao L., and Prammer, M.: NMR Logging Principles & Applications. Haliburton Energy Services, USA., 1999.
- [2] Cotts R.M., Hoch M.R., Sun T., Markert J.T.: Pulsed field gradient stimulated echomethods for improved NMR diffusion measurements in heterogeneous systems. Journal of Magnetic Resonance 83, 1989.
- [3] Kenyon W.E.: *Petrophysical Principles of Applications of NMR Logging*. The Log Analyst, 2, 1997.
- [4] Klaja J., Kulinowski P.: Wykorzystanie metody magnetycznego rezonansu jądrowego do badania lepkości płynów złożowych. Nafta-Gaz, Nr 7, 2008.
- [5] Kleinberg R.L., Farooqui S.A., Horsfield M.A.: *T1/T2 ratio* and frequency dependence of NMR relaxation in porous sedimentary rocks. Journal of Colloid and Interface Science, 158, 1993.

rozmiar poru (*V/S*, lub promień poru – przy założeniu modelu cylindrycznego lub sferycznego).

Warto podkreślić po raz kolejny fakt, że do sygnału NMR dają wkład pory o wszystkich rozmiarach, co nie zawsze jest spełnione dla porozymetrii rtęciowej. Uzyskujemy w ten sposób dodatkową informację, która – połączona z wynikami porozymetrii rtęciowej – daje pełniejszy obraz wykształcenia przestrzeni porowej.

Uzyskane rezultaty zachęcają do dalszych prac, a w szczególności odniesienia wyników, które daje wdrożona procedura, do innych metod stosowanych w analizie przestrzeni porowej, takich jak: obserwacje w mikroskopie optycznym i skaningowym, mikrotomografia rentgenowska oraz ilościowa analiza składu mineralnego skał.

Recenzent: prof. dr hab. inż. Andrzej Kostecki

- [6] Marschall D., Gardner J.S., Mardon D., Coates G.R.: Method for correlating NMR relaxometry and mercury injection data. Proceedings of the 1995 International Symposium of core Analysts, Paper 9511.
- [7] Mitra P et al, Sen N., Schwartz L.M.: Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Phys. Rev. B 47, 1993.
- [8] SØrland G.H., Djurhuus K., Lien J.R., Skauge A.: Absolute Pore Size Distributions from NMR. International Symposium of the Society of Core Analysis, Norway, 2006.
- [9] Sun P.Z., Seland J.G., Cory D.: Background gradient suppression in pulsed gradient stimulated echo measurements. Journal of Magnetic Resonance 161, 2003.

Mgr inż. Jolanta KLAJA – ukończyła studia na wydziale Geologiczno-Poszukiwawczym Akademii Górniczo-Hutniczej w zakresie górnictwa i geologii, specjalność – geofizyka stosowana. W Instytucie Nafty i Gazu w Krakowie zajmuje się badaniem własności petrofizycznych skał metodami laboratoryjnymi, a w szczególności metodą magnetycznego rezonansu jądrowego (NMR).

Piotr KULINOWSKI – adiunkt w Instytucie Techniki Akademii Pedagogicznej oraz w Zakładzie Tomografii Magnetyczno-Rezonansowej Instytutu Fizyki Jądrowej PAN w Krakowie. Specjalizuje się w zastosowaniach obrazowania MR w badaniach postaci leku oraz zastosowaniu zlokalizowanej spektroskopii MR *in vivo* do badania fizjologii mięśni szkieletowych człowieka.