Józef Such

Instytut Nafty i Gazu, Oddział Krosno

Ocena właściwości frakcji C+ węglowodorów

Średnia masa cząsteczkowa frakcji C+ węglowodorów jest znaczącym parametrem składu chemicznego ropy naftowej. Uzyskuje się ją w wyniku destylacji laboratoryjnej TBP próbki ropy. W artykule pokazano możliwości wykorzystania korelacji teoretycznych, składu chemicznego ropy z chromatografii gazowej i wyników destylacji Englera, dla określenia tego parametru. Dokonano oceny błędu uzyskiwanych wyników, bazując na wynikach destylacji TBP.

Estimation of properties hydrocarbons plus fraction

The average molecular mass of hydrocarbon's C+ fraction is the significant parameter of the chemical content of the oil. It is possible to achieve it from true boiling point (TBP) oil distillation. The paper presents the possibilities of using theoretical correlations, chemical content of oil collected using gas chromatography and the results of Engler's distillation, for determining the average molecular mass of hydrocarbon's C+ fraction. Author performed the error analysis compared with the results of TPB oil distillation.

Wprowadzenie

Stany równowagi fazowej mieszaniny weglowodorów opisywane sa przez równania stanu, których postać zależy od charakteru chemicznego i ilości poszczególnych składników. Dla rozwiązania tych równań konieczna jest dla każdego składnika mieszaniny znajomość takich parametrów jak: temperatura krytyczna T_c , ciśnienie krytyczne P_c , współczynnik acentryczności ω i binarny parametr oddziaływań kij. Skład frakcyjny takiej mieszaniny można wyznaczyć chromatograficznie (dla lekkich węglowodorów), a także uzyskać z krzywej destylacji prowadzonej metodą ASTM D2892, tzw. TBP (True Boiling Point) oraz ASTM D5236 (Potstill destillation), metodami chromatograficznej destylacji pozorowanej (Simdist, ASTM D2887, D5307, D6352, D7213) lub metoda ASTM D86 - destylacja atmosferyczna Englera. Niezbędna jest również informacja o gęstości i masie cząsteczkowej poszczególnych frakcji w określonym zakresie temperatur wrzenia.

Wiadomym jest, że ropa naftowa i kondensaty zawierają dziesiątki różnych składników, co wyklucza fizyczną możliwość ich rozdziału na składniki pojedyncze. Dlatego też zachodzi konieczność grupowania składników poszczególnych frakcji w pojedyncze grupy o określonych właściwościach chemiczno-fizycznych, zwanych pseudoskładnikami. Grupa pseudoskładników, np. C₇₊ nazywana grupą heptan plus lub frakcją C7 plus, reprezentuje węglowodory z siedmioma lub więcej atomami węgla. Masa cząsteczkowa jest jednym z najważniejszych parametrów charakteryzujących grupę pseudoskładników i frakcję ropy naftowej. Jej doświadczalne wyznaczenie jest trudne, dlatego stosowane są teoretyczne zależności prognozujące tę wielkość. Wykorzystują one prostsze do określenia parametry fizyczne frakcji, takie jak zależność temperatury wrzenia, masy właściwej lub lepkości, od jej gęstości.

Większość korelacji teoretycznych wykazuje znaczne odchylenia od wartości doświadczalnych w zależności od jakości i zakresu wykorzystywanych do obliczeń danych. Główną przyczyną znacznych rozbieżności w uzyskiwanych wynikach jest fakt, że dane wykorzystywane do obliczeń same w sobie są obarczone określonym błędem, np. stosowane są różne definicje i sposoby określenia średniego punktu wrzenia frakcji. Mówi się o średniej temperaturze wrzenia objętościowej, masowej lub arytmetycznej, które zastosowane w obliczeniach dają różne wartości cyfrowe obliczanej wielkości.

Teoretyczne zależności dla określenia średniej masy cząsteczkowej frakcji C+ węglowodorów

Modele symulacyjne zmian fazowych wykorzystuja właściwości grupy pseudoskładników, jako reprezentatywnych dla frakcji z destylacji, o określonej średniej temperaturze wrzenia. Dla danej frakcji średnia temperatura wrzenia, masa cząsteczkowa i gęstość są podstawowymi wartościami fizycznymi wykorzystywanymi do dalszych obliczeń. Określają one właściwości mieszaniny, która nie może być reprezentowana przez pojedyncze składniki, a jedynie przez zbiór pseudoskładników. Ponieważ doświadczalne określenie masy cząsteczkowej frakcji weglowodorowych jest kosztowne i czasochłonne, dlatego jest ona często obliczana teoretycznie dla mieszaniny pseudoskładników. Dokładność w określeniu tej wartości ma duży wpływ na poprawne określenie składu frakcyjnego ropy, który jest wyjściowym parametrem symulacyjnych procesów wydobycia ropy i gazu.

Sposób określenia składu frakcyjnego ropy zależny jest od sposobu poboru jej próbki [8, 9]. Jeśli dysponujemy wgłębną próbką płynu, wtedy, jako zwykle jednofazowa, reprezentuje ona płyn złożowy. Próbka separatorowa zawiera zawsze próbkę ropy separatorowej i gazu separatorowego. Dopiero odpowiednie ich badania i rekombinacja próbek zezwalają na określenie składu płynu złożowego. Zasadniczo, do oceny składu frakcyjnego wykorzystywane są dwie techniki, tj.:

- chromatografia gazowa w połączeniu z danymi destylacji normalnej (Englera),
- destylacja TBP.

Przy wykorzystaniu analizy chromatograficznej (GC) masę cząsteczkową M_+ i gęstość ρ_+ odpowiedniej frakcji C+ obliczyć można z poniższych zależności [5]:

$$M_{+} = \frac{M_{ropy} w_{+}}{1 - M_{ropy} \sum_{i=1}^{N-1} \frac{w_{i}}{M_{i}}}$$
(1)

$$\rho_{+} = \frac{\rho_{ropy} w_{+}}{1 - \rho_{ropy} \sum_{i=1}^{N-1} \frac{w_{i}}{\rho_{i}}}$$
(2)

gdzie:

- M_{ropy} średnia masa cząsteczkowa próbki ropy uzyskana w pomiarach laboratoryjnych,
- M_i średnia masa cząsteczkowa i-tego składnika ropy,
- *r_{ropy}* średnia gęstość próbki ropy uzyskana w pomiarach laboratoryjnych,

- w_i masowy udział i-tego składnika w ropie,
- w_+ masowy udział frakcji C+ w ropie.

Korelacje teoretyczne dla określenia masy cząsteczkowej frakcji ropy bazują w zasadzie na wartościach punktu wrzenia i gęstości frakcji, lub (niektóre) na lepkości i współczynniku Watsona [4]. Dają one jednak wyniki w szerokich granicach, szczególnie dla ciężkich frakcji ropy. Poniżej pokazano podstawowe zależności oszacowujące masę cząsteczkową frakcji naftowych przy wykorzystaniu dostępnych i znanych właściwości fizycznych, wraz z ograniczeniami warunkującymi ich poprawne wykorzystanie. Są to: gęstość względna *SG*, definiowana jako stosunek gęstości składnika w 15,5°C do gęstości wody w 4°C

$$SG = \frac{\rho_i}{\rho_{H,O}} \tag{3}$$

oraz średnia temperatura wrzenia frakcji.

Dla złożonych mieszanin, jakimi są frakcje naftowe, nie jest celowe definiowanie stężeń ich wszystkich składników. Takie mieszaniny charakteryzowane są zwykle przez parametry uzyskiwane podczas oznaczeń analitycznych, np. z krzywych destylacji, czy z badań właściwości fizycznych [6]. Generalnie jako średnią temperaturę wrzenia stosuje się:

 objętościową średnią temperaturę wrzenia VABP (Volumetric Average Boiling Point)

$$VABP = \sum_{i=1}^{n} x_{vi} T_{bi}$$
(4)

gdzie:

 x_{vi} – udział objętościowy składnika *i*, T_{bi} – temperatura wrzenia składnika *i*,

 molową średnią temperaturę wrzenia MABP (Molal Average Boiling Point)

$$MABP = \sum_{i=1}^{n} x_i T_{bi}$$
⁽⁵⁾

gdzie:

- x_i udział molowy składnika *i*,
- masową średnią temperaturę wrzenia WABP (Weight Average Boiling Point)

$$WABP = \sum_{i=1}^{n} x_{w_i} T_{bi}$$
(6)

gdzie:

 x_{wi} – udział masowy składnika *i*.

Wykorzystywana tutaj temperatura wrzenia pseudoskładnika definiowana jest jako średnia arytmetyczna temperaturowego zakresu frakcji, w przedziale od 0,5°C poniżej do 0,5°C powyżej określonego zakresu danej frakcji lub masowo dla ilości 50% przedestylowanej frakcji [3].

Ropę charakteryzuje również współczynnik Watsona K_{UOP} lub K_W , określający jej charakter (parafinowy, naftenowy, aromatyczny lub pośrednie), definiowany według poniższej zależności [1]:

$$K_W = \frac{(1.8T)^{1/3}}{SG} \tag{7}$$

gdzie:

T – temperatura wrzenia [K],

SG – gęstość względna próbki w temperaturze 15,5°C.

Dla poszerzenia zakresu wykorzystania współczynnika Watsona koniecznym jest przyjęcie jednoznacznej definicji średniej temperatury wrzenia, dla prawidłowej interpretacji danych z krzywej destylacji ropy. Objętości próbki określane są dla temperatur odcięcia po oddestylowaniu 10, 20, 50, 80 i 90%. Wobec powyższego, objętościowa temperatura wrzenia czystego składnika w równaniu (7) jest zastępowana przez średnią temperaturę, zdefiniowaną jako:

- dla destylacji TBP:

$$VABP_{(TBP)} = \frac{T_{20} + T_{50} + T_{80}}{3}$$
(8)

dla destylacji normalnej:

$$VABP_{dest} = \frac{T_{20} + 2T_{50} + T_{90}}{4} \tag{9}$$

W ten sposób K_W dla ropy może być szybko określony z łatwo dostępnych danych, tj. gęstości względnej i krzywej destylacji [10].

W inżynierii złożowej stosowanych jest kilka sposobów obliczania masy cząsteczkowej frakcji C+. Poniżej pokazano podstawowe zależności wykorzystywane do oceny ich przydatności w badaniach krajowych rop, dla których wykonane były krzywe destylacji metodą TBP [6, 7]:

Metoda Chemstations

$$MW1 = 0.5 \times (MW2 + MW3)$$
(10)

Dawna metoda API

$$MW2 = 204,38 \times T_b^{0,118} \times SG^{1,88} \times e^{0,00218 \times T_b} \times e^{-3,07 \times SG}$$
(11)

Nowa metoda API

$$MW3 = 20,486 \times [e^{0,0001165 \times T_b - 7,78712 \times SG + 1,1582 \times 10^{-3} \times T_b \times SG}] \times (12)$$
$$\times T_b^{1,26007} \times SG^{4,983}$$

Metoda Lee-Kesler'a

$$MW4 = -12272,6 + 9486 \times SG +$$
(13)
+ (4,6523 - 3,3287 × SG) × T_b +
+ (1,0 - 0,77084 × SG - 0,02058 × SG²) ×
× (1,3437 - $\frac{720,79}{T_b}$) × $\frac{10^7}{T_b}$ +
+ (1,0 - 0,80882 × SG + 0,02226 × SG²) ×
× (1,8828 - $\frac{181,98}{T_b}$) × $\frac{10^{12}}{T_b^3}$

gdzie:

 T_b – średnia temperatura wrzenia frakcji [R], SG – gęstość względna mieszaniny [g/cm³].

Metoda według Kręglewskiego i Zwolińskiego [3]

$$MW5 = 0,010770 \times T_b^{[1,52869+0,06486 \times \ln(T_b / (1078 - T_b))]} / SG \quad (14)$$

gdzie:

 T_b – średnia temperatura wrzenia frakcji [K],

SG – gęstość względna mieszaniny [g/cm³].

• Metoda Craga [4]

$$MW6 = \frac{44,29 \times SG}{1,03 - SG}$$
(15)

Pokazane wyżej metody wykorzystane zostały dla obliczenia średniej masy cząsteczkowej poszczególnych frakcji próbek ropy, w temperaturach wrzenia określonych według Pedersena [5], z odwiertów Bu-9, Bu-17, Po-3K, Ra-5K i w celu porównania uzyskanych wyników z pomiarami otrzymanymi dla próbek z destylacji TBP. Końcowym efektem był wybór wiarygodnych zależności teoretycznych.

Ocena zgodności zależności teoretycznych z wynikami analiz składu ropy z krajowych złóż ropy naftowej

Ocena składu chemicznego płynu złożowego nabrała dużego znaczenia wraz z rozwojem modeli symulacyjnych złóż węglowodorów. Od dwóch lat wyniki destylacji próbek ropy metodą TBP wykorzystuje się w badaniach właściwości termodynamicznych płynów złożowych. Dotychczas wykonane były 4 pełnozakresowe destylacje ropy z odwiertów Bu-9, Bu-17, Po-3K oraz Ra-5K. W wyniku takich destylacji uzyskano frakcje w ilościach umożliwiających oznaczenie ich gęstości i mas cząsteczkowych oraz, co jest bardzo istotne, gęstości i masy cząsteczkowej pozostałości po destylacji. W tablicy 1 pokazano wyniki laboratoryjne oznaczeń mas cząsteczkowych (*MW*) frakcji z destylacji TBP i wyniki obliczeń mas cząsteczkowych poszczególnych frakcji próbki ropy według wcześniej przedstawionych metod obliczeniowych (*MW*1, *MW*2, *MW*3, *MW*4, *MW*5, *MW*6).

Analiza uzyskanych wyników pozwala wskazać kilka ich charakterystycznych wspólnych cech:

 liniową zależność pomiędzy ilością atomów węgla a odpowiadającym im logarytmom udziałów molowych z_N (rysunek 1)

Frakcja	Gestość 15°C	Gęstość 20°C	i _{ser}	MW wg TA*	MW1	MW2	MW3	MW4	MW5	MW6
	[g/em]]	lg/cm'l	I°CI	[g/mol]	[g/mol]	[g/mol]	[g/mol]	[g/mol]	[g/mol]	[g/mol]
C ₄	0.5696	0,5636	9.5	57	67	78	56	68	72	55
C,	0.6245	0.6195	27,75	78	76	85	60	71	75	68
Ca	0,6716	0.6671	63,9	83	91	- 48	8.3	81	87	83
C ₁	0.7193	0,7151	91,9	94	103	109	97	96	96	103
C.	0.7452	0.7412	116,7	108	114	119	110	111	106	116
C.	0,7666	0.7629	142,2	122	127	131	123	126	118	129
Cin	0,7779	0,7743	165,8	137	141	144	137	141	131	137
$C_{t\bar{t}}$	0.7896	0,7861	187,2	153	153	156	151	155	143	145
Cir	0.8044	0.8010	208,3	107	167	169	165	169	155	158
Cia	0,8073	0,8039	227,2	184	180	182	179	185	168	161
Gia	0,8165	0,8131	246,4	200	195	196	193	199	182	169
Cie	0.8285	0,8252	265	215	210	211	209	215	195	182
Cin	0,8292	0,8259	283	214	225	226	224	228	210	183
Cr	0.8267	0.8234	300	225	242	243	241	244	226	180
Cix	0.8289	0.8256	.313	250	255	256	254	258	238	183
Cin	0,8355	18.8322	325	257	267	267	260	272	248	190
C20.	0,8476	0,8443	338	263	279	179	278	285	258	206
C.11	0.8537	0,8504	351	285	292	293	292	298	270	214
C22	0,8566	0.8534	363	308	300	307	306	312	283	219
C_{-4}	0,8592	0,8560	375	327	321	322	320	325	296	223
C_{2n}	0.8612	0.8580	386	344	335	336	.334	338	302	.226
C2-	0.8639	0.8607	.197	360	349	351	348	351	32.1	230
C_{2n}	0,8671	0,8639	408	383	364	366	362	364	335	236
Car	0,8698	0.8666	-419	397	379	382	377	376	349	240
C_{∞}	0,8726	0,8594	-429	407	394	397	391	387	364	246
C29	0,8747	0,8715	438	433	408	411	404	309	374	249
C.a-	0.8919	0.8887	-527	\$69	569	581	558	521	524	286

Tablica 1, Zestawienie laboratoryjnych i obliczonych wielkości masy czasteczkowej dla odwiertu Bu-9

"TA - oznaczono w Zakładzie Analiz Naftowych ITN, obecnie INiG

NAFTA-GAZ

$$C_N = A + B \ln z_N \tag{16}$$

gdzie *A*, *B* są stałymi określonymi z dopasowania do posiadanych danych laboratoryjnych,

 liniową zależność gęstości frakcji ropy w układzie semilogarytmicznym w zależności od ilości atomów węgla C_N dla C_N > 8 (rysunek 2)

$$\mathbf{r}_N = C + D \ln C_N \tag{17}$$

gdzie *C*, *D* są stałymi określonymi z dopasowania do posiadanych danych laboratoryjnych.

Zależność masy cząsteczkowej i temperatury wrzenia poszczególnych frakcji ropy od gęstości tych frakcji dla odwiertu Bu-9 i łącznie dla odwiertów Bu-9, Bu-17, Po-3K, Ra-5K, pokazują odpowiednio rysunki 3, 4 i 5.

Porównanie eksperymentalnych i obliczonych wartości mas cząsteczkowych z wykorzystaniem wcześniej pokazanych równań zestawiono w tablicy 2. Zawiera ona wielkości względnego błędu masy cząsteczkowej dla frakcji C_{30+} obliczanego według zależności:

$$\frac{\Delta MW}{MW_{exp}} = \frac{MW_{exp} - MW_{obl}}{MW_{exp}} \times 100 \ [\%] \tag{18}$$

oraz średniego błędu względnego masy cząsteczkowej *n* frakcji dla danej ropy, obliczanego według poniższej zależności:

$$\left(\frac{\Delta MW}{MW_{\text{exp}}}\right)_{sr} = \frac{1}{n} \times \sum_{i=1}^{n} \frac{\left|MW_{i,obl} - MW_{i,exp}\right|}{MW_{i,exp}} \times 100 \quad (19)$$

Analiza uzyskanych błędów pokazuje, że dla frakcji C_{30+} uzyskuje się nieco większe odchylenia od wartości doświadczalnej niż dla frakcji do C_{29} . Zasadniczy problem tkwi w określeniu średniej temperatury wrzenia tej frakcji, która de facto jest tzw. pozostałością i nie ma

Rys. 1. Zależność stężenia molowego pseudoskładnika od ilości atomów węgla dla odwiertu Bu-9

Rys. 2. Zależność gęstości pseudoskładnika od ilości atomów węgla dla odwiertu Bu-9

określonej końcowej temperatury wrzenia. Do obliczeń wykorzystano możliwość określenia średniej temperatury wrzenia frakcji C₃₀₊ z rysunków 6 i 7 w zależności od jej gęstości. W ten sposób uzyskano wartości masy cząsteczkowej tej frakcji, z błędem rzędu do 10%, ze względu na możliwość niedokładnego określenia temperatury wrzenia. Inaczej przedstawia się ta sprawa dla frakcji ropy do C₂₉, dla których niezbędne parametry do obliczeń są znane z destylacji. Dla nich uzyskuje się wyniki najbardziej zbliżone do eksperymentalnych według zależności MW4 (13) (metoda Lee-Kesler'a) i MW3 (12), mieszczące się w granicach kilku procent błędu względnego. Przeprowadzone obliczenia i analizy pokazują, że obliczenia według zależności (12) i (13) dają najbardziej prawdopodobne wyniki obliczeń masy cząsteczkowej. Zbliżone wyniki daje metoda Kręglewskiego, według (14).

artykuły

Rys. 3. Zależność masy cząsteczkowej frakcji ropy od ich gęstości dla odwiertu Bu-9

Rys. 4. Zależność masy cząsteczkowej frakcji ropy od ich gęstości dla odwiertów Bu-9, Bu-17, Po-3K, Ra-5K

Rys. 5. Zależność temperatury wrzenia frakcji od gęstości frakcji dla odwiertów Bu-9, Bu-17, Po-3K, Ra-5K

	1.00	Gestusé	MW			Oblicza	NIC MW		
Odwien	Frakcja	frakcji w 20°C	eksperym. [g/mol]	MW1 [g/mol]	MW2. [g-mal]	MW3 [g/ma1]	MW4 [g/mol]	MW5 [g/mol]	MW6 [g/mel]
			Po-3	к					
MW	Cs.	0:9695	687	716	731	701	-590	670	755
Blad wegledny Car [%]	100			-4,22	-6.4%	-1,97	-14.0	-2.52	-9,85
Sr. blad wzgl. ber Cm. [%].				3.68	3.04	3,47	4.)3	6,66	6,20
			Ra-5	К					
MW	Cat-	0.9284	536	0.548	664	130	564	0185	419
Błąd względny Car [%]	100	100	1000	-21,3	-23,9	-18,7	-5,27	-11.9	21.77
Sr. blad wzgl. bez C [%]	(m. 1)			3.01	3,92	3,11	4,34	5,59	13,21
			Bu-	9					
MW	Chr	0,8887	569	569	581	558	521	524	286
Blad względny Car, [*n]	1		1.1.1	-0.08	-2,13	1.96	8,49	7,93	49.73
Sr. blad wzgl. bez C [%].				3.24	3,45	3,26	3.68	7,38	23.0X
Construction of Construction of Construction			Bu-l	7					
MW	Can	0.8920	604	608	622	593	546	561	294
Blad wegleduy Car [%]			1.1.1	-0.63	-2.99	-1.74	9.64	7.30	51,30
Sr. blad wzgl. bez C. [26]			-	3,20	3,33	3,25	3.37	8,51	24,01

Tablica 2, Zestawienie blędów w obliczeniach masy cząsteczkowej (MW) frakcji Cau, dla ropy z ezterech odwiertów

Metodyka określenia średniej masy cząsteczkowej frakcji C+ węglowodorów na podstawie destylacji i analizy chromatograficznej ropy oraz badań PVT

Destylacja ropy metodą TBP jest destylacją kosztowną i czasochłonną – stąd nie zawsze jest możliwość dysponowania jej wynikami. Powszechnie dostępne są wyniki destylacji Englera, która – jeśli wykonana jest w przedziałach temperatur odpowiadających temperaturom wrzenia poszczególnych frakcji ropy, przy równoczesnym pomiarze gęstości tych frakcji – może dawać niezbędny materiał do określenia ich masy cząsteczkowej. różnych metod destylacji. Przeprowadzone zostały obliczenia masy cząsteczkowej tych frakcji w oparciu o dane z destylacji ropy z wykorzystaniem zależności *MW*3 i *MW*4. Uzyskane przykładowe wyniki i porównanie z *MW* z destylacji TBP pokazano na rysunku 7 i w tablicy 4.

Destylacja Englera do temperatury 317°C, z dokładnym pomiarem objętości i gęstości każdej frakcji (również i pozostałości), umożliwia określenie składu chemicznego

W tym kierunku poczynione zostały niezbędne prace laboratoryjne i obliczeniowe dla uzyskania danych porównawczych. Destylacja Englera prowadzona była w temperaturach odpowiadających temperaturom wrzenia frakcji ropy według Pedersena [5], z równoczesnym pomiarem ich gęstości dla odwiertów Bu-9, Bu-17, Po-3K i Ra-5K. Przykład destylacji Englera dla odwiertu Po-3K pokazano w tablicy 3.

Przykładowe porównanie wyników gęstości uzyskanych z destylacji Englera i TBP pokazano na rysunku 6.

Porównując uzyskane wyniki, widać dobrą zgodność w pomiarach gęstości poszczególnych frakcji dla

Rys. 6. Porównanie wyników gęstości frakcji ropy z destylacji TBP i Englera dla odwiertu Po-3K

Frakcju	Objętość destylatu	Temp. 7 T ^a	wrżenia C]	Gęstość w 20°C	Masa destylatu	b/s (milim)	83 (19.45	Suma destylatu	Destylat ze strut.
	[cm]	. od	do	[g/cm ²]	Lgd.	Tursaily	(rac)	[cm ²]	[cm]
C.	4,36	0,0	31,0	0.6594	2,87	3,41	4,47		4,36
Cs	3,45	36,3	69,2	0.6813	10,49	1.17	1,49	1,45	5,81
Cr	3,16	69,2	98,9	0,7031	2,22	2,64	3,24	4,61	8.97
C.	2,40	98,9	126,1	0,7363	1,27	2.10	2,46	7,01	11.37
C,	5,40	126,1	151,3	0,7583	4.09	4.86	5,54	12,41	16,77
Cja	2,40	151.3	174,6	0,7781	.1.87	.2.22	2,46	14,81	19,17
C_{11}	4.35	174.6	196.4	0.7937	3.45	4.10	4.46	19,16	23.52
C_{12}	4,38	196,4	216,8	0,8064	3,53	4,19	4,49	23,54	27.90
C ₁₅	2,38	216,8	235,9	0,8170	1.94	2,31	2,44	25,92	30,28
C14.	3.41	235,0	283,0	0.8262	2,82	3.34	3,50	29.33	94, EE
City	3,40	153,9	271,1	0.8374	2,85	3.38	3,49	32,73	40,7E
Cin	3.16	271,1	287,0	0,8459	2,67	3,17	3,24	35.89	40,25
C17	4,05	287,0	303,0	0,8562	3,47	4,12	4,15	39,94	44,30
.C _{III}	6,00	303,0	317,0	0.8671	5,20	6,17	6,15	45,94	50,30
Cim	47.20	317.0		0.9431	44.51	52.83	48,41	93,14	97.50
Suma	93.14				84.27	100,00	1080.080	-	

Tablica 3. Destylacja Englera ropy z odwiertu Po-3K

Tablica 4. Zestawienie porównawcze mas cząsteczkowych frakcji ropy; obliczonych metodą API i Lee-Kesler'a, z doświadczalnymi

Test dia		Po-3K			Ra-5K			Bu-9			Bu-17	
Francia	TBP	MW3	MW4	TBP	MW3	MW4	TBP	MW3	MW4	TBP	MW3	MW4
\mathbf{C}_{τ}	78	68	67	77	68	68	78		-	77	-	1.1
C.	83	84	87	83	83	88	83	83	88	83	84	87
Cr	94	97	102	94	97	1.04	- 94	97	1.03	-94	97	102
C,	107	110	114	107	150	118	108	110	116	108	£10	115
C.	121	123	129	121	124	129	122	124	130	122	124	129
Cm	136	137	142	135	137	143	137	138	144	137	138	143
Co	151	150	156	150	150	1.56	[53	151	157	153	151	157
C_{12}	178	164	170	173	164	171	167	165	172	168	165	172
Co	195	177	184	179	178	185	184	179	186	190	179	186
C ₁₄	:200	102	198	193	193	200	200	194	201	200	194	201
C ₁ .	206	207	214	207	209	316	215	210	217	204	210	217
Cin	215	221	128	216	224	231	214	225	232	213	225	232
C (7.	.239	236	243	325	239	346	225	240	248	231	240	248
Cit	230	247	254	231	251	258	250	253	260	250	252	200
Car	463	652	571	400	.195	390	415	473	457	421	455	443

ropy na podstawie rozdziału poszczególnych frakcji, od C_6 do C_{18} , według ich temperatur wrzenia. Frakcja, która nie przedestylowała jest frakcją C_{19+} .

Analiza chromatograficzna ropy umożliwia określenie jej składu chemicznego, ale bez udziału frakcji ciężkich. Bilansowa korekta tego składu z uwzględnieniem pozostałości z destylacji Englera pozwala na określenie wyjściowego składu ropy naftowej. Pozostaje jeszcze ocena wartości masy cząsteczkowej frakcji C_{19+} , której dokonać można wykorzystując program PVTsim i wyniki laboratoryjnych badań PVT tej ropy. Metoda regresji do wyników tych badań, np.: kontaktowych, jednostopniowej separacji ropy, wielkości ciśnienia nasycenia i wykładnika gazowego, pozwala skorygować parametry równania stanu i uzyskać poprawione właściwości wybranych pseudoskładników badanej ropy (np. temperaturę i ciśnienie

NAFTA-GAZ

krytyczne, współczynnik acentryczności oraz masę cząsteczkową frakcji C_{19+}). Dopasowana w ten sposób wartość masy cząsteczkowej i określona gęstość pozostałości z destylacji Englera może być wykorzystana dla określenia składu ropy.

Rys. 7. Porównanie mas cząsteczkowych z destylacji Englera i TBP dla odwiertu Po-3K

Porównanie uzyskanych wyników z wynikami badań TBP

Dotychczasowe wyniki przedstawionych analiz i obliczeń pozwalają przypuszczać, że dopuszczalnym jest wykorzystywanie nowej metody obliczeniowej API (MW3) i Lee-Kesler'a (MW4), dających wyniki zbieżne z eksperymentalnymi, do obliczeń masy cząsteczkowej frakcji ropy. Uzyskane w tym zakresie dotychczasowe próby pokazano w tablicy 4 dla frakcji od C_5 do C_{18} , tj. dla zakresu uzyskiwanego z destylacji atmosferycznych. Różnice w obliczonych wielkościach masy czasteczkowej są mniejsze niż 10%, co dla pierwszego przybliżenia jest wystarczające. Pozostaje jeszcze określenie masy cząsteczkowej frakcji C₁₉₊ na podstawie danych z destylacji atmosferycznej, w przypadku braku danych z TBP. Obliczenia masy cząsteczkowej frakcji C₁₉₊ wspomnianymi metodami API (MW3) i Lee-Kesler'a (MW4) wymagaja znajomości dwóch podstawowych wielkości dla tej frakcji, tj. jej gestości i temperatury wrzenia. Pierwszy parametr uzyskujemy metoda pomiaru fizycznego gęstości pozostałości z destylacji, drugi zaś należy oszacować. Biorac pod uwagę dobrą zgodność zmienności temperatury wrzenia

od gęstości pomiędzy destylacją TBP i destylacją Englera (rysunek 6), można prognozować temperaturę wrzenia dowolnej frakcji z danych destylacji Englera w oparciu o wspomniane zależności graficzne. Określone temperatury wrzenia można wykorzystać do obliczeń *MW*3 i *MW*4. Uzyskane wyniki dla frakcji C₁₉₊ zawiera tablica 4. Masa cząsteczkowa frakcji C₁₉₊ dla metody TBP określona została z danych destylacyjnych, z wykorzystaniem poniższej zależności [5]:

$$MW_{C+} = \frac{\sum_{i=C+}^{C_{\max}} z_i MW_i}{\sum_{i=C+}^{C_{\max}} z_i}$$
(20)

gdzie:

 z_i – udział molowy składnika *i*.

Poniżej w tablicy 5 zestawiono uzyskane wyniki obliczonych mas cząsteczkowych frakcji C+ dla odwiertów Po-3K, Ra-5K, Bu-9 oraz Bu-17.

	-	Fraksj	a Cm.	_	-	Frake	in Car	_		
Wyszczególnienie	a start and a start of the star	Odw	ierty		-	Ody	vierty			
	Po-3k	R-5k	Bu-9	Bu-17	P-34	R-5k	Bu-9	Bu-17		
Z destylacji TBP	463	400	415	421	687	536	569	604		
Z destylacji Engleta										
Oblicz, wg metody AP1	451	43 I	473	455	701	636	558	593		
Oblicz, wg Lee-Kesler a	431	421	457	443	590	564	521	546		
Wg aproksymacji graficznej	435	422	442	454	518	635	500	561		
Z regresji PVJ sini	1	-	514	510	-	-		-		

Tablica 5. Zestawienie obliczonej rožnymi metodami masy cząsteczkowej frakcji C101 i C301

Oszacowania masy cząsteczkowej dla frakcji C_{19+} na podstawie wyników destylacji Englera mieszczą się w granicach błędu poniżej 8%, co stwarza możliwość wykorzystania metodyki w praktyce. Błąd ten znacznie rośnie dla frakcji cięższych, np. C_{30+} , co ogranicza możliwość stosowania tej metody dla frakcji cięższych. Uzyskane w czasie obliczeń błędy pokazano w tablicy 6.

Widać, że dokładność oszacowania właściwości fizycznych frakcji w znacznym stopniu wpływa na wielkości obliczonych mas cząsteczkowych, szczególnie dla cięższych frakcji naftowych. **Tablica 6.** Biędy obliczeń masy cząsteczkowej frakcji C₁₁ i C₁₀ na podstawie wyników destylacji Englera

Odwiew	Blad względny [*a]					
Station	frakcja C 10-	frakcja C,				
Po-3K	-5,99	-24.57				
Ra-5K	5,09	18,50				
Ba-9	6.37	12:18				
Bu-17	7.72	-7,06				

Podsumowanie

Celem niniejszego artykułu była ocena możliwości określenia masy cząsteczkowej frakcji C+; niezbędnego parametru składu chemicznego ropy i wyznaczenia parametrów równania stanu przy pomocy zależności teoretycznych, z wykorzystaniem w miarę łatwo dostępnych danych z atmosferycznej destylacji Englera. Wyniki destylacji TBP ropy zostały tutaj wykorzystane jako bazowe, dla porównania z uzyskiwanymi wynikami z destylacji Englera. Pokazano szereg najczęściej stosowanych zależności teoretycznych, które wykorzystano do obliczeń dla czterech odwiertów. Wyniki obliczeń porównano z doświadczalnymi wynikami destylacji TBP i stwierdzono, że najbardziej zbliżone do doświadczalnych daje tzw. nowa metoda API oraz metoda Lee-Kesler'a. Te dwie metody były stosowane w obliczeniach z wykorzystaniem danych z destylacji Englera. Z uzy-

Literatura

- Behrenbruch P., Dedigama T.: Classification and characterisation of crude oils based on distillation properties. Journal of Petroleum Science and Engineering, 57, 166-180, 2007.
- [2] Curtis H. Whitson: Characterizing Hydrocarbon Plus Fractions. Society of Petroleum Engineers of AIME, August 1983.
- [3] Goossens Adrian G.: Prediction of Molecular Weight of Petroleum Fractions. Ind. Eng. Chem. Res., vol. 35, 985-988, 1996.
- [4] Gurewicz I.L.: Właściwości i przeróbka pierwotna ropy naftowej i gazu. Wydawnictwo Naukowo-Techniczne, Warszawa 1975.
- [5] Pedersen K.S., Christensen P.L.: *Phase Behavior of Petroleum Reservoir Fluids*. Taylor & Francis Group, 2007.
- [6] Physical Properties version 5.4, User's Guide, Chemstations Inc. USA.
- [7] Schneider D.F.: Select the Right Hydrocarbon Molecular Weight Correlation. Stratus Engineering, Inc. PMB 339, 1998.

skanych porównań wynika, że dane z destylacji Englera w połaczeniu z analizą chromatograficzną ropy można stosować do obliczenia masy cząsteczkowej frakcji np. do C19+ w przypadku destylacji prowadzonej do temperatury wrzenia 317°C, w przedziałach temperaturowych odpowiadających temperaturom wrzenia frakcji według Pedersena [5], z równoczesnym pomiarem gęstości każdej frakcji. Dla frakcji C₁₉₊ błąd względny w oszacowaniu masy cząsteczkowej z danych z destylacji Englera wynosił poniżej 8% w porównaniu z danymi z TBP. Zatem w przypadku braku danych z destylacji TBP, dla określenia masy cząsteczkowej frakcji do C₁₉₊ można wykorzystywać dane z destylacji atmosferycznej Englera. Zapewnia to możliwość określenia składu chemicznego ropy złożowej dla celów symulacyjnych, prognozowania wydobycia i oceny zmian fazowych.

Recenzent: doc. dr Michał Krasodomski

- [8] Warchoł M: Określenie składu płynu złożowego dla złoża BMB na podstawie próbek wglębnych. Dok. INiG, wrzesień 2007.
- [9] Warchoł M: Badania składu płynu złożowego metodą TBP dla złoża BMB. Dok. INiG, grudzień 2007.
- [10] Wauquier Jean-Pierre: *Petroleum Refining*. Institut Francais du Petrole, 1995.

Mgr inż. Józef SUCH – pracownik naukowo-techniczny. Absolwent Akademii Górniczo-Hutniczej w Krakowie. Długoletni pracownik Instytutu Nafty i Gazu. Specjalizuje się w zagadnieniach eksploatacji złóż ropy i gazu ziemnego, inżynierii złożowej i interpretacji testów otworowych.