Karolina Pieniążek

Instytut Nafty i Gazu, Kraków

Ocena zastosowania metody optymalizacji globalnej SA (Simulated Annealing) do wyznaczenia prędkości propagacji fali poprzecznej w ośrodkach geologicznych o różnej geometrii

Celem pracy była próba określenia kryteriów zastosowania metody optymalizacji globalnej SA dla wyznaczenia prędkości propagacji fali poprzecznej w odwrotnym zadaniu sejsmicznym. Obliczenia prowadzono na modelach o coraz bardziej skomplikowanej geometrii ośrodka. Rozpoczęto od modelu o granicach płaskorównoległych, następnym modelem był model o granicach nachylonych, natomiast ostatni model posiadał granice o dowolnej geometrii. Za podstawowe poszukiwane parametry ośrodka geologicznego przyjęto: prędkość propagacji fali podłużnej, prędkość propagacji fali poprzecznej oraz głębokość danej warstwy. Prowadzone badania pozwoliły na dalsze rozpoznanie metody symulowanego wyżarzania i jej użyteczności w konkretnym zadaniu geofizycznym.

Evaluation of application of SA method for estimation of shear wave velocity in the geological medium with varied geometry

The aim of this paper was determination the criterions of application of global optimization method SA (*Simulated Annealing*) in estimation of shear wave velocity in inverse problem in seismic method. Calculations were made for models with more and more complex geometry of the geological medium. The first model had plane and parallel boundaries, the second model had plane and slope boundaries, the last model had arbitrary boundaries. The parameters of geological medium which were sought in the first place were as follows: longitudinal wave velocity and shear wave velocity and also depth of boundaries and their angles of dip. The performed research helped to know SA method better and to state its usefulness for a specific geophysical problem.

Wstęp

Kluczowym zadaniem w geofizyce jest to, aby na podstawie danych otrzymanych z pomiarów geofizycznych wyznaczyć model ośrodka geologicznego, który jak najlepiej przybliża rzeczywisty ośrodek geologiczny. Problem jest tym trudniejszy, im bardziej skomplikowana jest geometria i charakterystyka badanego obszaru. W niniejszym opracowaniu, opartym na pracy statutowej o nr arch. DK-4100-11/08, zaprezentowano jeden ze sposobów rozwiązania odwrotnego zadania sejsmicznego. Kontynuując badania prowadzone w latach 2006-2007, w ramach projektu celowego pt.: "Metodyka i procedury przetwarzania danych sejsmicznych odbitych fal przemiennych" oraz pracy własnej pt.: "Zastosowanie metod probabilistycznych w rozwiązaniu odwrotnego zadania kinematycznego dla fali PS", zdecydowano się na podejście optymalizacyjne i zastosowano rozpoznaną w wyżej wymienionych pracach probabilistyczną metodę optymalizacji globalnej SA. Zadaniem było wyznaczenie prędkości propagacji fali podłużnej i poprzecznej oraz głębokości i kątów upadu granic refleksyjnych na podstawie hodografów sejsmicznych. Obliczenia prowadzono stopniowo na coraz bardziej skomplikowanych modelach. Podjęto próbę określenia kryteriów i warunków zastosowania metody SA dla postawionego zadania.

Rozwiązanie zadania w podejściu optymalizacyjnym

Problem optymalizacyjny polega na określeniu takich wartości parametrów, dla których zdeklarowana funkcja celu przyjmuje najmniejszą lub największą wartość. W przypadku odwrotnego zadania sejsmicznego, zbiorem parametrów są parametry fizyczne ośrodka geologicznego – prędkości propagacji fali podłużnej i poprzecznej oraz głębokości granic refleksyjnych. Natomiast funkcją celu jest funkcja

NAFTA-GAZ

dopasowania, która charakteryzuje różnice pomiędzy zaobserwowanymi danymi, a syntetycznymi danymi wyliczonymi z założonego modelu ośrodka geologicznego. Optymalizowana funkcja celu dla i-tej warstwy jest postaci:

$$f(m_i) = \sum_{k=1}^{K} \frac{1}{N} \sum_{j=1}^{N} (t_{pow}^{\ j} - t_{kokl}(m_j)^j)^2,$$

gdzie:

- $m_i = (h_i, \alpha_i, v_{pi}, v_{si})$ wartości parametrów dla i-tej warstwy,
- *t_{pom}^j* pomierzony czas przyjścia, zarejestrowany przez j-ty odbiornik,
- $t_{k,obl}(m_i)j$ syntetyczny czas przyjścia dla rekordu k, zarejestrowany przez j-ty odbiornik, obliczony dla ustalonych wartości parametrów modelu m_i ,
- N ilość pomiarów,
- K ilość rekordów.

Oprócz zdefiniowania funkcji celu i określenia parametryzacji modelu, dla problemu optymalizacyjnego należało dobrać program do modelowania sejsmicznego oraz wybrać metodę poszukiwania minimum funkcji celu.

Do modelowania sejsmicznego wykorzystano program MODKLXH (program autorski opracowany w INIG przez panią Krystynę Żukowską). Korzystając z tego programu obliczono hodografy modelowe, które traktowano jako hodografy "pomierzone", czyli dane z pomiarów. Program MODKLXH jest uruchamiany wielokrotnie podczas działania programu optymalizacyjnego, w celu obliczenia hodografów syntetycznych.

Rozwiązania poszukiwano za pomocą metody optymalizacji globalnej symulowanego wyżarzania SA (Simulated Annealing). W przeciwieństwie do klasycznych metod optymalizacji, nie wykorzystuje ona informacji o gradiencie funkcji celu, dzięki czemu posiada cechę wychodzenia z lokalnych ekstremów i jest niezależna od modelu początkowego, a także nie wymaga obliczeń na macierzach, które w przypadku modeli o dużej liczbie parametrów są praktycznie niemożliwe do implementacji. Zastosowaną technikę optymalizacji globalnej wyróżnia zupełnie nowe podejście do zagadnienia optymalizacji. Rozwiązania w kolejnych iteracjach nie są obliczane z ustalonych wzorów, lecz są generowane losowo, według ustalonego, składającego się z bardzo dużej ilości iteracji schematu. Stosowanie tej metody optymalizacji wymaga jednak dużo ostrożności i doświadczenia, gdyż jest ona zależna od doboru parametrów sterujących metodą. Dla metody symulowanego wyżarzania należy ustalić: temperaturę początkową i końcową, schemat chłodzenia oraz warunki zatrzymania algorytmu.

Dokładna charakterystyka metody, zalety i wady oraz zastosowanie metody w różnych dziedzinach nauki zostały opisane w wielu pozycjach z literatury światowej [m.in. 8, 12, 13], a także publikacjach polskich naukowców [1, 3, 14].

Opracowany program optymalizacyjny wyznacza wartości prędkości propagacji fali podłużnej i poprzecznej oraz głębokości (w dalszych testach również kąty upadu) granic refleksyjnych, dla których wymodelowane hodografy syntetyczne najlepiej przybliżają hodografy pomierzone. Optymalizacja przebiega warstwa po warstwie; od warstwy najpłytszej do najgłębszej. Ogólny schemat działania programu optymalizacyjnego przedstawiono na rysunku 1.

Rys. 1. Schemat blokowy rozwiązania problemu optymalizacyjnego w odwrotnym zadaniu sejsmicznym

Testowanie metodyki – modele i założenia

Zaproponowaną metodykę przetestowano na modelach charakteryzujących 3 typy ośrodka geologicznego:

1) model tzw. płaskorównoległy, 7-warstwowy, zdefiniowany na podstawie danych sejsmicznych i pro-

artykuły

filowania akustycznego z otworu Rajsko-1; parametry modelu I przedstawiono w tablicy 1 oraz na rysunku 2,

 model 4-warstwowy syntetyczny, o granicach płaskich, nachylonych (zastosowano kąt upadu < 30°); parametry modelu II przedstawiono w tablicy 2 oraz na rysunku 3,

 model 2-warstwowy o granicach dowolnych; parametry modelu III przedstawiono w tablicy 3 oraz na rysunku 4.

Rys. 2. Model testowy I – geometria ośrodka i hodografy modelowe

Tablica 1. Model testowy	I – wartości	parametrów	modelu
--------------------------	--------------	------------	--------

Parametr	Wartości parametrów dla poszczególnych granic									
1 arameti	L	2.	3.	4.	5.	6.	7.			
h	544	708	828	1028	1536	1620	1996			
vp	2180	3629	4113	3406	4726	4260	4813			
Vs	779	2792	2938	1892	2251	2506	2674			

Rys. 3. Model testowy II – geometria ośrodka i hodografy modelowe

rablica 2. Model lestowy II - waltoset parametrow like
--

Parametr	Wartości parametrów dla poszczególnych granic							
rarameu	1.	2.	3.	4.				
h	200	492	772	957				
α	0	-10	-15	-30				
V _p	2000	2400	2800	3400				
V _s	1333	1500	1647	1889				

NAFTA-GAZ

Rys. 4. Model testowy III - geometria ośrodka i hodografy modelowe

Parametr	Wartości parametrów dla poszczególnych granic				
	L.	2.			
h	300	Rys. 4			
α	0,024	Rys. 4			
vp	2000	2400			
V _s	1333	1500			

Tablica 3. Model testowy III - wartości parametrów modelu

W przypadku wszystkich modeli założono, że ośrodek geologiczny jest ośrodkiem o stałych prędkościach propagacji fali podłużnej i poprzecznej w obrębie każdej z warstw.

Dla modelu I i II przeprowadzono testy bez wykorzystania informacji, a następnie z wykorzystaniem danych o fali PP (optymalizacja dwuetapowa).

W przypadku modelu I obliczenia prowadzono dla 1 rekordu. Przyjęto rozstaw dwustronny, z ilością 161 odbiorników rozmieszczonych co 15 m. Dla modelu II obliczenia prowadzono dla 1 rekordu, a następnie dla 4 rekordów – punkty wzbudzania ustalono odpowiednio w odległości: 1000 m, 1500 m, 2000 m, 2500 m od początku profilu. Przyjęto rozstaw prawostronny, z ilością 96 odbiorników rozmieszczonych co 20 m. Natomiast dla modelu III obliczenia prowadzono dla 4 rekordów – punkty wzbudzania ustalono odpowiednio w odległości: 1580 m, 1780 m, 1980 m, 2180 m od początku profilu. Przyjęto rozstaw prawostronny, z ilością 96 odbiorników rozmieszczonych co 20 m.

W sytuacji, gdy uwzględniano informację o fali PP, optymalizacja przebiegała w dwóch etapach:

- etap 1 korzystając z hodografów fali PP, programem do optymalizacji dla fali PP wyznaczono optymalne wartości głębokości i prędkości fali v_p dla poszczególnych warstw danego modelu.
- etap 2 uruchomiono program do optymalizacji dla fali PS, zmieniając sposób generowania kolejnych wartości parametrów modelu w ten sposób, aby podczas procesu optymalizacji modyfikacja głębokości oraz wartości prędkości fali v_p były nieznaczne.

Testowanie metodyki

Podczas testowania napotykano wiele problemów związanych z zastosowaniem metody SA – zasadniczą trudnością było ustalenie uniwersalnych, najefektywniejszych parametrów sterujących. Wykonano wiele dodatkowych testów, ponieważ parametry sterujące algorytmami bazującymi na metodzie symulowanego wyżarzania można wyznaczyć jedynie metodą prób i błędów. Jednocześnie reguły rządzące algorytmem są trudne do zaobserwowania i mogą być niezgodne z intuicją; np. wartości parametrów modelu dla płytszej granicy ośrodka są gorzej przybliżone od wartości parametrów dla granicy położonej głębiej. W wyniku optymalizacji wartość jednego z parametrów może się pogorszyć w stosunku do wartości wyjściowej, a jednocześnie przybliżenie wartości innych parametrów może ulec poprawie. Kolejnym problemem jest brak możliwości oszacowania błędu przybliżenia wartości parametrów. Ocenę błędu estymacji parametrów ośrodka prowadzono pośrednio, drogą oceny różnicy pomiędzy wartością obserwowaną (hodograf modelowy, "pomierzony"), a obliczoną z funkcji $F = f(x, h, v_p, v_s)$ (hodograf syntetyczny). W metodzie sejsmicznej parametry h, v_p ,

.

 v_s ośrodka nie są przedmiotem pomiaru, a jedynie wynikiem interpretacji. Zdarza się, że wyznaczone hodografy optymalne dobrze przybliżają hodografy pomierzone, a wartości parametrów modelu mogą w rzeczywistości okazać się odległe od poszukiwanych, co jest związane z niejednoznacznością zadania.

Wyniki optymalizacji

Na rysunku 5 i w tablicy 4 przedstawiono najlepszy wynik optymalizacji dla modelu I. Na rysunkach 6 i 7

oraz w tablicach 5 i 6 zaprezentowano najlepsze wyniki dla modelu II.

Rys. 5. Wyniki optymalizacji z wykorzystaniem informacji o fali PP dla modelu I. Na wykresach przedstawiono rozkłady prędkości v_p i v_s modelowe (poszukiwane, kolor zielony) i rezultaty optymalizacji (kolor niebieski)

1	ablica 4. Wyniki	wyszczególni	ono pierwszy i d	ugi krok op	ran PP (ptymaliz	dwuetapowa) dia m zacji	iodelu I.	
						1		_

Lp.		Szukana wartość parametru	Początkowa wartość parametru	Parametr po optymalizacji etap I	Początkowa wartość parametru	Parametr po optymalizacji etap II	Błąd bezwzględny
		[m _{snik}]	etap I	[m _{optym}]	etap II	[m _{optym}]	$[m_{szak} - m_{optym}]$
	h	544	517	546,9	546	544,3	0,3
1.	vp	2180	2389	2186,4	2186	2186,3	6,3
	v,	779			856	779,1	0,1
	h	708	673	703,8	703	709,3	1,3
2.	Vp	3629	3266	3563,5	3563	3564,9	64,1
	V _s	2792			3070	2881,4	89,4
	h	828	869	826,3	826	834,7	6,7
3.	V _p	4113	3702	4161,4	4161	4157,9	44,9
	v.	2938			3231	2999,8	61,8
	h	1028	977	1038,3	1038	1035,5	7,5
4.	vp	3406	3746	3554,2	3554	3562,8	156,8
	v,	1892			1703	1862,4	29,6
	h	1536	1460	1531,2	1531	1544,8	8,8
5.	vp	4726	4253	4618,5	4618	4623,2	102,8
	V _s	2251			2475	2284,8	33,8
	h	1620	1701	1626,5	1626	1626,7	6,7
6.	vp	4260	4686	4702,6	4702	4713,4	453,4
	V.	2506			2255	2328,8	177,2
	h	1996	2095	1975,1	1975	1990,1	5,9
7.	vp	4813	4331	4484,0	4484	4482,9	330,1
	\mathbf{v}_{s}	2674			2941	2644,9	29,1

NAFTA-GAZ

Rys. 6. Wyniki optymalizacji bez wykorzystania informacji o fali PP dla modelu II. Obliczenia dla czterech rekordów. Na wykresach przedstawiono rozkłady prędkości v_p i v_s modelowe (poszukiwane, kolor zielony) i rezultaty optymalizacji (kolor niebieski)

Lp.		Szukana wartość parametru [m _{enk}]	Początkowa wartość parametru	Parametr po optymalizacji [m _{eptym}]	Błąd bezwzględny [m _{szak} – m _{eptym}]
	h	200	190	207	7
Ι.	а	0	0,000000	0,000000	0
1.	V _p	2000	1800	1954	46
	v,	1333,33	1400	1366	32,67
	h	492,0999	516	492	0,0999
<u> </u>	а	-0,178	-0,1869	-0,175016	0,002984
<u></u>	v,	2400	2640	2402	2
	V _s	1500	1650	1463	37
	h	772,2831	810	776	3,7169
.	а	-0,264	-0,25	-0,261888	0,002112
3.	V _p	2800	2520	2676	124
	v,	1647	1483	1725	78
	h	956,7797	909	959	2,2203
	а	-0,516	-0,5	-0,523431	0,007431
7.	V _p	3400	3060	3490	90
	V.	1888.89	2077	1866	22.89

Tablica 5. Wyniki optymalizacji bez wykorzystania informacji o fali PP dla modelu II. Obliczenia dla czterech rekordów

Rys. 7. Wyniki optymalizacji z wykorzystaniem informacji o fali PP dla modelu II. Na wykresach przedstawiono rozkłady prędkości v_p i v_s modelowe (poszukiwane, kolor zielony) i rezultaty optymalizacji (kolor niebieski).

Lp.		Szukana wartość parametru [m _{onk}]	Początkowa wartość parametru etap 1	Parametr po optymalizacji etap 1 [m _{optym}]	Początkowa wartość parametru etap 2	Parametr po optymalizacji etap 2 [m _{optym}]	Błąd bezwzględny [m _{senk} – m _{optym}]
	h	200	190	203	203	201	1
I	а	0	0,00000	0,000000	0,000000	0,000000	0
1.	V _p	2000	1800	1976	1976	1974	26
	V.	1333,33			1400	1311	22,33
	h	492,0999	516	488	488	490	2,0999
· .	а	-0,178	-0,1869	-0,179505	-0,179505	-0,176391	0,001609
<u></u>	V _p	2400	2640	2392	2392	2387	13
	v.	1500			1650	1483	17
	h	772,2831	810	764	764	770	2,2831
1	а	-0,264	-0,25	-0,260769	-0,260769	-0,262046	0,001954
5.	V _p	2800	2520	2733	2733	2732	68
	v.	1647			1483	1668	21
	h	956,7797	909	935	935	946	10,7797
4	а	-0,516	-0,5	-0,500795	-0,500795	-0,514866	0,001134
7.	v _p	3400	3060	3149	3149	3142	258
	V _s	1888,89			2077	1878	10,89

Tablica 6. Wyniki optymalizacji z wykorzystaniem informacji o fali PP dla modelu II. Wyszczególniono pierwszy i drugi krok optymalizacji

W przypadku modelu III otrzymane wyniki nie są satysfakcjonujące. Błędy przybliżenia prędkości oraz pa-

rametrów dotyczących geometrii ośrodka są duże. Wyniki optymalizacji przedstawiono w tablicy 7.

Lp.		Szukana wartość parametru [m _{szuk}]	Początkowa wartość parametru	Parametr po optymalizacji [m _{eptyn}]	Błąd bezwzględny [m _{srak} – m _{eptyn}]
· ·	V _p	2000	2100	2036	36
	v,	1333	1267	1436	103
2	Vp	2400	2520	2565	165
<i>4</i> .	V.	1500	1445	1668	168

Tablica 7. Wyniki optymalizacji bez wykorzystania informacji o fali PP dla modelu III

Analiza wyników

Dla wyników testów dla modeli I i II obliczono błąd względny procentowy ($|(v_{szuk} - v_{optym}) / v_{szuk}|$ * 100%) (tablica 8).

Wyniki nie są zadowalające dla modelu płaskorównoległego w sytuacji braku informacji o fali PP – błąd względny procentowy jest taki sam lub nawet przekracza błąd z jakim przyjęto model początkowy (prędkości v_p i v_s w modelu początkowym przyjęto jako oddalone od prędkości v_p i v_s modelu początkowego o ± 10%).

Rezultaty działania programu optymalizacyjnego ulegają znacznej poprawie, gdy skorzysta się z wcześniejszych obliczeń dla fali PP – dla pierwszych pięciu granic obie prędkości zostały przybliżone z bardzo dobrą dokładnością, a dla dwóch ostatnich granic błąd względny procentowy nie przekracza 10%.

W przypadku testów dla modelu o granicach nachylonych bez wykorzystania informacji o fali PP również oszacowanie prędkości nie jest zadowalające – dla drugiej granicy błąd względny procentowy dla obu prędkości pozostał na poziomie błędu, z jakim przyjęto model początkowy (10%). Znacznie lepsze wyniki otrzymano, gdy do obliczeń włączono dane z kolejnych rekordów. Błąd dla drugiej granicy spadł do 4,5% w przypadku prędkości v_p i do 5% w przypadku

	Ma	del I, pins 7-wars	korównole stwowy	olegly, Model II, o granicach nachylony 4-warstwowy						nyeb,		
	Test I bez informseji io fali v _p		Test 2 z iaformacją p fali v _y		Test I bez Test 2 uiformacji z informacją o fali v _p o fali v _p		Test 2 z iaformaeja o fali v _p I rekord		Test 2 bez informacji o fali v _p 4 rekordy		Test 3 2 informacija 9 fali v _{et} 4 rekordy	
Predkose Nr granicy	٧ _ŕ	(x _i).	vr	v,	y _g ,	· v ₄ .	y _p ,		.v ₂ .	У,		
Granica I.	1	1	0,3	-0,01	2	7	2	2,5	1	2		
Granica 2	7	10	2	3	2	2	0,1	2,5	0,5	1		
Granica 3	-11	10	- 31 -	2	10	11	4.5	5	2,5	1.3		
Citanica 4	9	16	5	2	6	7	3	-1-	8	0.5		
Granica 9	9	9	2	1.5	111	10 A. 10						
Granica 6	ŤT.	9	10	7	1 m.							
Granica.7	9	18	6	7								

Tablica 8. Błąd względny procentowy przybliżenia prędkości v, i prędkości v, żestawienie wyników testów dla modeli I i II

Lewa część tabeli dotyczy modelu 1. przwa część dotyczy modelu 11. W kolumnach umieszczono bład względny procentowy przybliżenia prędkości v_e ($(v_{1,mak} - v_{1,mak})^{\mu} 100\%$), obliczony ula przeprowadzanych testów. Przykładowo błąd przybliżenia prędkości v reście 2 dla modelu 11 (założono, że nie zminy prędkości v_e v podczas opiymalizacji poszukiwane są obsi parametry modelu – v_e i v_e obliczenia prowadzono dla danych z 4 rekotdow) dla graziek w zakraty nie 2 wynośt 0,1% w przybadowu predkości v_e 1,2,5% w przybadku predkości v_e.

prędkości v_s , natomiast gdy optymalizację przeprowadzono dwuetapowo – najpierw dla fali PP, a następnie dla fali PS, korzystając z wyników etapu pierwszego, dokładność przybliżenia prędkości dla pierwszych trzech granic wzrosła i błąd nie przekroczył 2,5%. Duży błąd przybliżenia prędkości v_p dla czwartej granicy (8%) jest spowodowany dużym błędem wartości tego parametru otrzymanym w pierwszym etapie optymalizacji (w przypadku optymalizacji dwuetapowej, najpierw korzystając z hodografów fali PP oszacowana zostaje prędkość v_p oraz geometria ośrodka, a następnie korzystając hodografów fali PS oszacowana zostaje prędkość v_s ; jednocześnie wartości pozostałych parametrów modelu modyfikowane są w nieznacznym stopniu).

Jeśli chodzi o zastosowanie metody SA do wyznaczenia prędkości propagacji fali PS dla modelu o granicach dowolnych to przeprowadzone testy nie pozwalają na pełną ocenę działania metody. Nie jest oczywiste, jak najlepiej dobrać sposób parametryzacji geometrii ośrodka, a każdy nowy rodzaj parametryzacji wymaga przeprowadzenia wielu prób i testów, w celu dobrania parametrów sterujących metodą. Jest to proces wysoce czasochłonny, a problem ten mógłby stanowić temat osobnej pracy.

Podsumowanie

Prowadzone badania pozwoliły na dalsze rozpoznanie metody symulowanego wyżarzania i jej użyteczności w odwrotnym zadaniu sejsmicznym. Najlepsze wyniki otrzymano, gdy w obliczeniach uwzględniono informację o fali PP (optymalizacja dwuetapowa). Dotyczy to zarówno modelu o granicach płaskorównoległych, jak i modelu o granicach nachylonych. Dobre wyniki uzyskano również dla modelu o granicach nachylonych, gdy powiększono liczbę rekordów włączonych do obliczeń.

Autorka pragnie złożyć szczególne podziękowanie dla pani prof. Haliny Jędrzejowskiej-Tyczkowskiej, za sformułowanie problemu badawczego i pomoc przy realizacji pracy. Gorące podziękowania należą się również pani dr Krystynie Żukowskiej za udostępnienie, a także zmodyfikowanie na potrzeby niniejszej pracy programu do modelowania sejsmicznego.

Recenzent: prof. dr hab. inż. Andrzej Kostecki

Literatura

- [1] Dębski W.: Zastosowanie techniki Monte Carlo do rozwiązywania wybranych zagadnień sejsmologicznych. Instytut Geofizyki PAN, 2004.
- [2] Dębski W., Tarantola A.: Information on elastic parameters obtained from the amplitudes of reflected waves. Geophysics, vol. 60, no. 5, p. 1426-1436, 1995.
- [3] Dębski W.: The Probabilistic Formulation of the Inverse Theory with Application to the Selected Seismological Problems. Instytut Geofizyki PAN, 1996.
- [4] Ingber L.: Simulated annealing: Practice versus theory. Math. Comput. Modeling 18 (11), 29-57, 1993.
- [5] Jędrzejowska-Zwinczak H.: Problematyka fal niepodłużnych w badaniach sejsmicznych. Prace Instytutu Górnictwa Naftowego i Gazownictwa, 1979.
- [6] Jędrzejowska-Tyczkowska H. i in.: Metodyka i procedury przetwarzania danych sejsmicznych odbitych fal przemiennych. Dokumentacja projektu celowego, archiwum INIG, 2004-2006.
- [7] Jędrzejowska-Tyczkowska H., Pieniążek K.: Zastosowanie metod optymalizacji globalnej, a szczególnie symulowanego wyżarzania (simulated annealing), do rozwiązania odwrotnego zadania kinematycznego w metodzie sejsmicznej. Nafta-Gaz, 2007.
- [8] Kirkpatrick S., Gelatt C.D., Vecchi M.P.: *Optimization* by simulated annealing. Science 220, 671-680, 1983.

- [9] Landa E., Kosloff D., Keydar S., Koren Z., Reshef M.: A method for determination of velocity and depth from seismic reflection data. Geophysical Prospecting, 36, p. 223-243, 1988.
- [10] Masters T.: *Sieci neuronowe w praktyce*. Wydawnictwa Naukowo-Techniczne, 1996.
- [11] Pieniążek K.: Określenie kryteriów i warunków zastosowania procedury symulowanego wyżarzania do wyznaczania prędkości propagacji fali poprzecznej. Dokumentacja pracy statutowej, archiwum INIG, 2008.
- [12] Pullammanappallil S.K., Louie J.N.: Inversion of seismic reflection traveltimes using a nonlinear optimization scheme. Geophysics, vol. 58, no. 11, p 1607-1620, 1993.
- [13] Sen M., Stoffa P.L.: Global optimization methods in geophysical inversion, Elsevier, 1995.
- [14] Wojdyla M., Danek T.; Inversion of magnetotelluric sounding data based on Very Fast Simulated Annealing. 18th International workshop on Electromagnetic Induction in the Earth, El Vendrell, 17-23 September 2006.

Mgr Karolina PIENIĄŻEK – absolwentka kierunku Matematyka na Uniwersytecie Jagiellońskim, specjalizacja: Zastosowania Matematyki. Od lutego 2007 roku pracownik Zakładu Sejsmiki Instytutu Nafty i Gazu w Krakowie. Zajmuje się zastosowaniem metod optymalizacji stochastycznej w rozwiązaniu odwrotnego zadania kinematycznego w metodzie sejsmicznej.

artykuły